学年

教科

質問の種類

数学 高校生

この問題で、接線を写真のように置くか、接点を解答のように置くか迷ったのですが、どう判断すればよいですか?回答よろしくお願いします。

例題 D 出 不★★☆☆ 点(α, 0) から曲線 y=logx に異なる2本の接線を引くことができると 定数αの値の範囲を求めよ。 ただし, lim- t 0 を用いてよい。 (1) 817 点 (t, logt) における接線を1とすると 点(α, 0)から→ l が (a, 0) を通る →t と αの方程式 - 【 接線が2本 → 接点が2個 対応を考える «ReAction 接点が与えられていない接線は,接点を文字でおけ 例題 34 () tについての方程式と →みて、異なる2つの 実数解をもつ → tが2個 3 (logx)'= = よりの傾きはあり 1 x ( 章 t₁ t2 接点が異なる 接線の傾きが異なる 接線が異なる Action» 接線の本数は、接点の個数を調べよ 思考のプロセス いろいろな微分の応用 接点をP(t, logt) (t > 0) とおくと、点Pにおける接線の真数条件 moiinA 例題 84 方程式は y-logt = =(x-t) これが点(a,O)を通るから, 0-logt = 1/2(a-t)より y' = 1 x t(1−logt) = a ・① であるから、接点が異なれば接線も異なる。 よって、接点の個数と接線の本数は一致する。 ゆえに、tの方程式 ① は異なる2つの実数解をもつ。 f'(t) =-logt f(t) = t(1-logt) (t > 0) とおくと f'(t) = 0 とするとt=1 ここで,logt = -s とおくと, t→+0 のとき s→∞ となり 1 y' x ol (U) 014 12130-(笑) t (0) 両辺に掛ける。 キのとき 1 1 -キーより, 接点が異 t₁t2 なれば接線の傾きも異な る。 (x) limtlogt = lime*(-s)=i(-1/2)=0 S (S) よって limf(t) = 0 YA また, limf(t) = =-- ∞ であるから, 1- y=a 817 2本の接線を引いた図 例題 118 増減表とグラフは次のようになる。 1 0 e t t 0 ... 1 ... f'(t) f(t) + 0 7 1 y=f(t) ①の実数解は,曲線 y=f(t) と直線 y=αの共有点の 座標であるから, 異なる2つの共有点をもつとき,定数 の値の範囲は 0 <a< 1 Oa y=logx 本の接線が引けるとき, 定数 αの

解決済み 回答数: 1
数学 高校生

明日テストなので、至急ではないのですが、回答していただけると嬉しいです!! (2)です。解説見ても解き方分からないので教えて欲しいです。 特に黒丸をつけた重解ら辺が分かりません。 4mはどこからきたのか、2・5はなにか、を中心に教えてもらえると助かります。

練習 28 x+y^2=5と直線 y=2x+mについて, 次の問いに答えよ。 教 p.99 (1)円と直線が共有点をもつとき, 定数mの値の範囲を求めよ。 (2)円と直線が接するとき, 定数の値と接点の座標を求めよ。 針円と直線の位置関係 円の方程式と直線の方程式からyを消去して,xにつ いての2次方程式を作る。これを解くと, (共有点があれば) 共有点のx座標 が求められるが,円と直線の位置関係を知るには,この2次方程式の判別式 Dの符号を調べればよい。 (1) 共有点をもつ共有点は2個または1個 D≧0 (2) 接する→共有点は1個 D=0 解答 x2+y=5とy=2x+mからyを消去すると x2+ (2x+m)=5/ 整理すると 5x2+4mx+(m²-5)=0 ...... ① 判別式をDとすると 1/2=(2m)2-5(m²-5)=-(m-25) (1)この円と直線が共有点をもつのは, D≧0のときである。 よって, m²-25≦0より -5≤m≤5 (2)この円と直線が接するのは,D=0のときで ある。 よって, m²-25=0より m=±5 また, 方程式 ① が重解をもつとき, その重解はx=- 4m_2 2・5 m 5 この値をy=2x+m に代入すると 2 5 y=2( — — — — m) +m=— — — m 1 5 y=2x+m v√5 X 0√5. m であるから,接点の座標は(-/1/23m, 1/3 m) と表される。 L=5のとき (-21), m=-5 のとき (2,-1) 劄

解決済み 回答数: 1
数学 高校生

この手書きだと答えが違うのですが、なぜダメですか?

補充 例題 140 223 三角方程式の解法 (和積の公式の利用) ①①①①① 2πにおいて, 方程式 sin30- sin20+sin0 = 0 を満たす 0を求めよ。 CHART & SOLUTION [類 慶応大] 補充 139 2倍角, 3 倍角の公式を利用して解くのは大変 (別解 参照)。 3項のうち2項を組み合わせ て,和→積の公式 sin A+sin B=2sin- A+B A-B COS により積の形に変形。 2 2 残りの項との共通因数が見つかれば, 方程式は = 0 の形となる。 そのためには sin30 と sin0 を組み合わせるとよい。 解答 の 1 ヨチ 学 関 0与式から (sin30+sin0)-sin20=0 ここで sin30+sin0=2sin 30+0 30-0 COS 2 2 =2sin 20 cose よって 2sin 20cos-sin20=0 3 すなわち sin 20(2cos0-1)=0 あせ ← (30+0)÷2=20 である から sin 30, sin0 を組 み合わせる。 4章 積=0 の形に。 したがって sin200 または cos0= 0≦0 <2πであるから 0≤20<4л この範囲で sin200 を解くと 20=0, π, 2, 3π coso= の参考図 2 y1 1 π 3 よって 0=0,, x, x π, π 002 の範囲で cos0= π 5 |-1| を解くと 0= π 3 3 したがって,解は 3'2 0=0, 1, 7, 7. x. 3* 3 5 π, π 別解 sin 30 - sin 20+sin0 =3sin0-4sin0-2sinOcos0+sin0 =4sin 0-4 sin³0-2 sin cos 0 =2sin0(2-2sin'-cos0 ) =2sin(2cos2d-cose)=2sin0cos0 (2cos0-1) よって, 方程式は 2sincos (2cos0-1)=0 ゆえに sin00 または cos0=0 または cosθ=- 2 したがって、002 から求める解は π 0=0, 1, 1, x, x, 3 5 3' 2 π, 2T, 3π PRACTICE 140 53 T 13 ON |1 1x T 2 17 加法定理 sin30=3sin0-4sin 0, sin20=2sin Acoso ← sin20=1-cos2 COSA=Q を満たす 0 を求めよ。

解決済み 回答数: 1