学年

教科

質問の種類

数学 高校生

数学の宿題です。キ、クが分かりません。誰か教えてもらえないでしょうか、、、。明日提出なのでなるべく早くお願いしたいです🙇‍♀️

【5】 次の先生とAさんの会話を読んで、下の(1)~(3)の問いに答えなさい。 先生: 三角柱において、 頂点の数をV、 辺の数をE、面の数をFとして、 V-E+Fの値を求めてみましょ う。 Aさん:アになります。 先生: 正解です。 このようにどの多面体においても、 V-E+F=ア (※) はつねに成り立ちます。 こ のことをオイラーの多面体定理といいます。 ところで、 正多面体は全部で何種類ありますか。 Aさん:イ種類あります。 先生: 正解です。 正二十面体は同じ大きさの20個の正三角形で囲まれた立体で、 v=ゥE=エ F=20ですから、オイラーの多面体定理が成り立 ちますね。 では、 右の図のような、 すべての頂点が1個の正五角形 (黒い面) と 2個の正六角形(白い面)が重なっている多面体Sを考えます。 この多面体Sの 正五角形の面をx個、 正六角形の面を個とするとき、オイラーの多面体定 理を用いて、x、yの値を求めてみましょう。 Aさん : わかりました。 多面体SのV、E、F をそれぞれx、yを用いて表してみます。 多面体Sの頂点は、正五角形1個と正六角形2個の頂点どうしが重なっている から、V=オ ….① コ 多面体Sの辺は、正五角形や正六角形の辺と辺が重なっているから、 E=カ ...(2) また、 F=x+y … ③ ①~③を (※)の式にあてはめると、x=キを得ます。 また、 この多面体の頂点の数は、すべての 正五角形の頂点の数の和に等しいから、y を得ます。 先生: よくできました。 (1) 会話文中のア ア (2) 会話文中のオ おくこと。 (3) 会話文中のキ ホ3 に適する数を求めなさい。 5x+6g . カに適するxとyを用いた式を求めなさい。 ただし、式は最も簡単な形にして 5x+6y カ 6- クに適する数を求めなさい。 2

未解決 回答数: 1
数学 高校生

数一数と式 nがどこから出てきたのかわからないです。 後、エ、ケ、コサシ、ス、セがわからないです。 分かる方お願いします。

実践問題 太郎さんと花子さんのクラスでは、数学の授業で先生から次のような宿題が出された。 (1) 0026870 201 宿題 実数x に対して, A = (x + 1)(x + 2)(5 − x)(6 − x) B = Ax(4-x) : とおく。 きくとチェ AT OR <A> #¹3564 (a) x=2+√2 のときのBの値を求めよ。 (b) A=120となるようなxの値はいくつあるか。 ANTENJE) HERO 太郎さんと花子さんは,二つの整式 A,Bを整理していくことについて話している。 太郎 この整式Bについて, Aを用いずに表すと B = x(x+1)(x+2)(4-x) (5-x) (6-x) となるね。 花子:xの式が6個かけ算されているのね。このうちの2つずつを組合せて少し整理でき ないかな。 例えば, X = x(4-x) とおいてみるとか。 太郎 : 確かにそのようにおくと, 整数nに対して, (x+n)(n+4−x) = X +n² + ア となるから, 例えば,n=1のときは, (x-1)(イ-x)=x-ウ エ になるね。 花子:そうね。これで二つの整式A, BがXを使ってもう少し整理された形になるね。 下線部について,整式B を X で表すとエ の解答群 12 | 数学 Ⅰ X(X + 1)(X + 2) X(X + 5)(X + 12) 4 (X + 1)(X + 4)(X + 9) n となる。 X(X + 1)(X + 4) (X + 1)(X + 2)(X + 3) (X + 1)(X + 5)(X + 12) (2) 花子 : x = 2+ X だから B だとわ 太郎 : (b)に一 だね A= A = 12 t 0 1 ④2

回答募集中 回答数: 0
数学 高校生

数1の2次関数の問題です。 もし良ければ ア、イ、オ、カ、キの問題の解説をお願いします🙏🏻🥺 答えは、ア,③ イ,-5<α<4 ウ,④ エ,③ オ,-aの二乗+a カ,-6 キ,-2<a<3 です!!

16 風早君と爽子さんが一緒に宿題で出た問題を考えています。 次の会話文を読んで, P.DE ア ウ I は選択肢から選び, イ オ カ まる式や値を答えなさい。 ( と エ 9 アの選択肢: ①:D> 0 9 (1) どんなxの値に対しても f(x) > g(x) が成り立つ -46- (2) どんな x1, x2 の値に対しても f(x1)> g(x2) が成り立つ。 ウと 【 宿題 】 2つの2次関数f(x)=x2-2ax+a,g(x)=−2x2+4x-8について、次の条件を 満たすように,定数aの値の範囲を求めよ。 H 9 キ はあては は同じものを選んでもよい) (ア): 1点, (イ) : 2点 (ウ) と ) 完答: 2点, (オ) ~ (キ) : 各2点 風早:(1) が成り立つためにはすべてのxの値に対して、f(x) - g(x)>0となればいいね! 爽子:そうか! y=f(x) - g(x) とおくと、 すべてのxの値に対して>0となるαの範囲を 求めればいいんだね。 風早 : そうだね。 f(x)-g(x)=0 の判別式をDとすると、 ア ア 爽子: を解いてみると….. 答えはイ だね。 (1) は解けたぞ! 風早 : やった! 次は (2) かぁ。 (2)は...(1) と何が違うんだろう? 爽子 : (1) は f(x)とg(x) に代入するxの値が共通だけど, (2) は共通とは限らないよ。 風早: 本当だ、 爽子さんよく気が付いたね。 ということは, (2) が成り立つためには (f(x)のウ)> (g(x)の エ)となればいいね! 爽子: f(x)の ウはオで,g(x)のエ はカだからオ 解けばいいね! 風早 : できた! 答えはキだ! となればいいんだよ。 > カを ②:D=0 ③:D<0 ③ :D < 0 ④:D≧0 ④ :D20 ⑤: D≤0 エの選択肢: ①: 軸 ②: 判別式 ③: 最大値 ④: 最小値

回答募集中 回答数: 0