学年

教科

質問の種類

数学 高校生

(2)の解き方を教えてください😫答えは2です💦

[2] △ABCにおいて, BC = α, CA = 6, AB =c, ∠A=A, ∠B=B, 2つの等式 bcos B = ccosC•••• ①, bsin B=csinC ......② がそれぞれ成り立つとき,△ABCはどのような形状であるかを考察する。 等式①についての考察・ 余弦定理を用いて, cos B を a, b, c を用いて表すと, cosB= ( である。 COS C についても同様に α, b, c を用いて表し、 ①に代入して式変形すると (A) って (イ) または (ウ) が得られる。 (イ) のとき,△ABCは二等辺三角形であり, (ウ) のとき, △ABC は直角三角 形である。 等式②についての考察 正弦定理を用いて、 ②を辺の長さの関係式にすると,△ABCの形状がわかる。 以上により, △ABCにおいて,等式①が成り立つことは等式 ②が成り立つための をα, b c を用いて正しくうめよ。 (1Xi) (茸) (イ) で答えよ。 (エ) 。 (ウ) に当てはまるものを、次の1~6のうちから一つずつ選び,番号 1 a=b 4a+b2=2 2b=c 562+2=d2 c=a 6 c²+a²= b² また、 (A)に入る (イ) (ウ) を求める過程を(A)の解答欄に記述せよ。 (3) に当てはまるものを,次の1~4のうちから一つ選び、番号で答えよ。 1 必要十分条件である 2 必要条件であるが,十分条件ではない 3 十分条件であるが, 必要条件ではない 4 必要条件でも十分条件でもない (配点 10)

回答募集中 回答数: 0
数学 高校生

緑のマーカーの条件がどこに書いてあるかわからないです💦

B2 [1] ∠BAC が鈍角の ABCがあり、 10√2 である。 (1) sin ∠BAC の値を求めよ。 (2) 辺 CA の中点をMとするとき, 線分 BMの長さを求めよ。 また, △ABM の外接円の 半径を求めよ。 (配点 10 ) [2] △ABCにおいて, BC = 4, CA = b, AB = c, ∠A=A, ∠B=B, ∠C=C とする。 2つの等式 bcos B=ccosC・• ①, bsin B=csin C ...... ② がそれぞれ成り立つとき, △ABCはどのような形状であるかを考察する。 等式①についての考察 余弦定理を用いて, cos B を a, b, c を用いて表すと, cosB= 5 である。 COS C についても同様に a, b, c を用いて表し、 ① に代入して式変形すると (A) って (イ) または (ウ) が得られる。 (イ) のとき,△ABCは二等辺三角形であり, (ウ) のとき, △ABCは直角三角 形である。 等式②についての考察 正弦定理を用いて, ②を辺の長さの関係式にすると,△ABCの形状がわかる。 以上により, △ABCにおいて, 等式①が成り立つことは等式 ②が成り立つための (エ) (1Xi) ( を a, b, c を用いて正しくうめよ。 (イ) (ウ) に当てはまるものを,次の1~6のうちから一つずつ選び、番号 で答えよ。 1 a=b 4 a²+b² = c² 2b=c 562+2=12 3 c=a 6 c²+a²= b² また、 (A)に入る (イ) (ウ) を求める過程を(A)の解答欄に記述せよ。 (2) (エ) に当てはまるものを,次の1~4のうちから一つ選び, 番号で答えよ。 1 必要十分条件である 3 十分条件であるが, 必要条件ではない 4 必要条件でも十分条件でもない 2 必要条件であるが,十分条件ではない (配点 10)

回答募集中 回答数: 0
数学 高校生

(2)の問題なんですけど、2枚目に撮ったところが分からなくて…私は解説の横に書いた手書きの図なんですけど、こうなると思って計算したら間違えてしまいました。なぜ3、5、aがあの場所になるのか解説してくだされば幸いです、宜しくお願い致します🙇

(例題79) (1) 次の三角形は鋭角三角形, 直角三角形, 鈍角三角形のいずれか a=3,b=10,c=8 3辺の長さが, 3, 5, a a この値の範囲を定めよ。 の三角形が鋭角三角形となるように正の数 E ポイント (1) 最大角は最大辺の対角( (2)鋭角三角形とは,三角形が成立し, かつ鋭角三角形 と考えます。鋭角三角形になる条件は, Aが鋭角かつBが鋭角 wwwww パターン(74) だからBになります。 三角形が成立しなければ 鋭角条件を満たしても 意味ないよね と考えます。 ポイント B C この三角形では,最大角はAかBかわからない。 Cだけはありえない 解答 ∴AとBの両方が鋭角になれば鋭角三角形!! (1)最大角はBである。 よって 82+32-102__27 cosB= 2.8.3 (2) 三角形の成立条件より, より、鈍角三角形。 48 負 [3+5>a ••• ① 3辺を図のようにおく 3+α> 5 ... ② C la+5>3 ...③ B (5) また,鋭角三角形になるための条件はa>0より 4 0<a<v34 (3) COSA= 3²+5²-a² 2.3.5 lcosB= 32+α²-52 >034-a>0 ...④ ->0a²-16>0 2.3.a これより,4<a<√34 ① (2) -202 4 √34 8 a >0より a>4 パターン79 鋭角三角形, 鈍角三角形 171

未解決 回答数: 2
数学 高校生

A Hの求め方がわかりません

00000 p.264 基本事項 S XOXsine C めても 10 あ 基本 例題 163 図形の分割と面積 (1) 次のような四角形ABCD の面積Sを求めよ。 平行四辺形ABCD で, 対角線の交点をOとすると AC=10, BD=6√2, ∠AOD=135° 00000 AD//BCの台形 ABCD で, AB=5,BC=8, BD=7, ∠A=120° 指針 解答 /P.265 基本事項 2 基本 162 四角形の面積を求める問題は, 対角線で2つの三角形に分割して考える (1) 平行四辺形は, 対角線で合同な2つの三角形に分割されるから S=2△ABD また, BO=DO から △ABD = 2△OAD よって、 まず △OAD の面積を求める。 (2) 台形の面積)=(上底+下底)×(高さ)÷2 が使えるように, 上底AD の長さと高 さを求める。 まず, △ABD (2辺と1角が既知) において余弦定理を適用。 CHART 四角形の問題 対角線で2つの三角形に分割 (1)平行四辺形の対角線は、互いに他を2等分するから OA= =1/2AC=5, OD= ゆえに よって BD=3√2 AOAD A B D 135° O -12 OA・ODsin 135°=123・5・3√2/1/12 S=2△ABD=2・2△OAD(*)=4• 15 55 2 = 267 (*) △OAB と△OAD は, それぞれの底辺を OB, OD とみると, OB=OD で, |高さが同じであるから,そ の面積も等しい。 [参考] 下の図の平行四辺形 C の面積Sは 15 52 S=1/2AC・BDsine =30 [練習 163 (2) 参照] A D D 0 120° 5 7 (2) △ABD において, 余弦定理により A 72=52+AD2-2・5・AD cos 120° AD2+5AD-24=0 4 4章 1 三角形の面積、空間図形への応用 ゆえに よって (AD-3) (AD+8)=0 AD> 0 であるから AD=3 B C BH C 8 頂点Aから辺BCに垂線 AH を引くと AH=ABsin∠ABH, ( ZABH=180°-∠BAD=60° (g)(ABAA <AD / BC よって S=1/12(AD+BC)AH (上底+下底)×(高さ)÷2 -12(3+8)-5sin60=55/3 =CA 4 163 (1) 平行四辺形ABCD で, AB=5, BC=6, AC=7 練習 次のような四角形ABCDの面積Sを求めよ (O は ACとBD の交点)。 (2)平行四辺形ABCD で, AC=p, BD=g, ∠AOB=0 (3) AD / BC の台形ABCD で, BC = 9CD=8, CA=4√7, <D=120° Sare

回答募集中 回答数: 0
数学 高校生

2番の問題でなぜタンジェントを求めてるんですか?

258 基本例 例題 157 三角形の辺と角の大小 : 000 △ABCにおいて, sin Asin B:sinC=√7:√31が成り立つとき △ABCの内角のうち、最も大きい角の大きさを求めよ。 △ABCの内角のうち, 2番目に大きい角の正接を求めよ。 三角 p.248 基本事項園 の1つ 指針 (1) 正弦定理より, α: b:c=sinA: sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 基本例 1 AB=2, BC = (1)xのとり (2) AABC, 三角形の辺と角の大小関係より, 最大辺の対角が最大角 a<b⇔ A<B a=b A=B a>b⇔A>B であるから、3辺の比に注目し, 余弦定理を利用。 指針 (2) まず, 2番目に大きい角のcos を求め, 関係式 1+tan20=- 三角形の2辺の大小関係は,その対角の大小関係に一致する。) B (1) 三 (2) ここ 角 1 COS20 を利用。 例 C b により a (1) 正弦定理 解答 sin B sin C sin A a:b:c=sinA: sin B: sin C これと与えられた等式から よって、 ある正の数んを用いて ...... (*) 01- ak b√√3kk cos A= 2.√3k.k よって、 最大の角の大きさは 大の色である。 余弦定理により (√3k)2+k-√7k)2 と表される。ゆえに、が最大の辺であるから,4が最k を正の数として a:b:c=√7:13:1 sin A sin B ||a:b=sinA b C a b sin B SinC から b:c=sinB:si 合わせると(*)とい 解答 (1) よ (2) [ -008-288-CLA b C √3 1 とおくと -3k2 √3 2√3k2 2 A=150° (2)(1) から2番目に大きい角はBである。 k2+√7k2-(√3k)2 Fa=√7k, b=√1 c=k= abcからA よって,Aが最大の ある。 余弦定理により 203 A 5k² cos B= 2.k.√7k 275 k √3 2√7 01 B √7k 1 等式 1+tan2 B= から cos2 B tan2B= cos² B 5 1=(2/7)-1 28 001- 320- i-1= 25 25 A> 90° より B <90°であるから 5 3 V 25 tan B> 0 したがって tan B= 5 練習 △ABCにおいて 8 7 ② 157 sin A sin Basin C が成り立つとき √√3 = ■三角比の相互関係。 (p.238 例題 144 参 DARD (1)の結果を利用。 △ABC は鈍角三角形 (1)△ABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2)△ABCの内角のうち、最も小さい角の正接を求めよ。 [類 愛知工 | 練習 ③ 15

未解決 回答数: 0
数学 高校生

2番の赤線を引いたAHの長さはどこでわかるんですか?

000 0.264 基本事項 e S XOXsine 1 FINA 基本例 163 図形の分割と面積 (1) 次のような四角形ABCD の面積Sを求めよ。 平行四辺形ABCD で, 対角線の交点を0とすると AC=10, BD=6√2, ∠AOD = 135° 00000 AD/BCの台形ABCD で, AB = 5, BC = 8, BD = 7, ∠A=120° 指針 解答 /P.265 基本事項 基本 162 四角形の面積を求める問題は, 対角線で2つの三角形に分割して考える。 (1) 平行四辺形は, 対角線で合同な2つの三角形に分割されるから S=2△ABD また, BO=DO から AABD=2A0AD よって、 まず △OAD の面積を求める。 (2) 台形の面積)=(上底+下底)×(高さ)÷2 が使えるように,上底 AD の長さと高 さを求める。 まず, △ABD (2辺と1角が既知) において余弦定理を適用。 CHART 四角形の問題 対角線で2つの三角形に分割 (1) 平行四辺形の対角線は,互いに他を2等分するから =1/2AC=5, OA= OD=BD=3√2 AOAD = 2 JA A EL D 135° 0 √2 15 267 | (*) △OAB と △OAD は, それぞれの底辺を OB, OD とみると, OB=OD で, 高さが同じであるから,そ の面積も等しい。 C 参考 下の図の平行四辺形 の面積Sは -AC・BD sin 0 S=1/2A1 B 1/13 OA・OD sin 135 1/12・5・3/21/12=12 5.3√2. (*) S=2AABD=2.2A0AD =4• -=30 (2)△ABD において,余弦定理によりA 2 A ADS- 練習 163 (2) 参照] D 4 4章 1 三角形の面積、空間図形への応用 ゆえに を求めても よって 内角であ A <180° nA<l D 72=52+AD2-2・5・AD cos 120° 5 ゆえに AD2+5AD-24=0 120° 7 よって (AD-3)(AD+8)=0+4 B C BH C AD> 0 であるから AD=3 8 -, a,b,c ど, 薫が比較 頂点Aから辺BC に垂線 AH を引くと AH=ABsin∠ABH, ∠ABH=180°-∠BAD=60° <AD / BC 利用する Jih 1200 よって S=(AD+BC)AH 18 (上底+下底)×(高さ) ÷ 2 =(3+8)-5 sin 60°= 55√3 CA 18 162 練習 次のような四角形ABCD の面積Sを求めよ (O は ACとBDの交点)。 ② 163 (1) 平行四辺形ABCD で, AB=5, BC=6, AC=7 (2)平行四辺形ABCD で, AC=p, BD=g, ∠AOB=0円 (3)AD // BCの台形ABCD で, BC = 9,CD=8, CA=4√7, ∠D=120° Sare

未解決 回答数: 1