学年

教科

質問の種類

数学 高校生

複素数の問題です。 POINT CHECKとPRACTICEの大門1について、 どちらも同じ「複素数の範囲で因数分解をしなさい」と言われていて、前者の答えは()の中の分数を無くすようにしているのに対して、後者は()に分数があるまま答えを出しています。 何が違うのでしょう... 続きを読む

第2章 複素数と方程式 1 複素数と2次方程式 23 解と係数の関係 (2) 数Ⅱ [学習日 P64 POINT CHECK ①の類題 実数の範囲で因数分解する。 2次方程式 4.12x+7=0を解くと, ・特に指定がない場合は, 有理数の範囲で因数分解する。 つまり、 2次式はつねに1次式の積に因数分解できる。 (ただし, 複素数の範囲) 学習の目標 2次方程式の解を利用して因数分解しましょう。 STUDY GUIDE 愛念の全合 2次式の因数分解 2次方程式 ax+bx+c=0の2つの解をα, B とおくと, 次の関係がある。 公式の因数分解 ax'+bx+c=a(α)(B) 計算における注意 因数分解のときに,g を忘れないこと。 α. β は,解の公式から必ず求められる。 要点をまとめましょう。 662-4.7 I= 4 68 4 3±√2 2 一複素数 実数 [ 有理数!!!!無理数 よって, 例題 次の2次式を複素数の範囲で因数分解しなさい。 x²-4x+1 解の公式から解を求める 2次方程式 4x+1=0を解くと. x=2±√2"-1=2±√3 よって, 4r+1={z(2+√3)} {ェー(2-√3)} =(x-2-√3)(x-2+√3) 実数の範囲での因数分解 POINT CHECK ◆次の2次式を複素数の範囲で因数分解しなさい。 ①の類題 4ー12c+7 x²-6x+14 2次方程式6z+14=0を解くと. =3±√32-14=3±√-5=3±√5i よって、 = 6z+14= {z(3+√5)}{ェー(3−√5) (3-5) (3+√5i) 42-12F+7=(3+/2)(x-3) 2 =(2x-3-√2) (2-3+√2 ) ②の類題 複素数の範囲で因数分解する。 2次方程式 92+6x+2=0を解くと, I= -3±√32-9.2 9 -3±√-9 複素数の範囲での因数分解 9 -3±√9i 要点の確認をしましょう 9 -1±i 品の類題 9z+6z+2 = 3 (2x-3-√2) (2x-3+√2) -64- PRACTICE 1 次の2次式を複素数の範囲で因数分解しなさい。 10 L100 (1) 3-7x+3 よって, 9x²+6x+2=9(x−−1 + 1)(x-1-1) 3 =(3+1-i)(3c+1+i) (3x+1-i)(3x+1+i) P65 PRACTICE 1 2次方程式の解を求めて, 因数分解する。 (1) 2次方程式32-7x+3=0を解くと, 7±√13 I= 6 数Ⅱ 練習問題を解いてみましょう L103 (2) 2-3x+5 3c-7s+3=3(x_7+/13)(x_7-/13) 6 6 (2) 2次方程式 2-3x+5=0を解くと, 3(x-7+√13)(x-7-√13) 6 6 3+√11 (x-3)(x-3) 2 次の式を ①有理数 ② 実数 ③複素数の各範囲で因数分解しなさい。 3±√11i 2 3+5=(x-3)(x-3) 2 2(1) -32-10=(x2+2) (2-5) ① =(x2+2)(x+√5)(x-√5) →②

解決済み 回答数: 1
数学 高校生

至急助けて欲しいです💦 どのように15通りを求めたかを教えてください🙇‍♀️

解説 _Student/Page/Student/Explanation.aspx?questionNo=752222 一組のトランプからハートとスペードのそれぞれ1~11のカードを取り出し、 この22枚をよく混ぜてから2枚を引くとき、2枚が異なるマークになるか、 2枚の数字の和が18以上になる確率を求めよ。 [狙い] 確率における和事象の求め方について理解する。 [方針] ① ベン図を書いて、 求めたい状況について整理する。 ②それぞれの事象単独で起きる確率を求める。 ③その確率の合計から、両事象が同時に起こる確率を求め、求める確率を計算する。 [答案] 和事象の問題。 各事象を足し合わせたものから重複分を除く。 全事象は22枚から2枚を引くので2C2通りであり、2枚が異なるマークになるのは、どの数字を 引くかで,x1=121通り。 次に和が18以上になる時を考えると以下のように場合分けできる。 和が18の時は (7,11) (8,10) (9,9)のみで、 マークを考えて(2C ×2C,)×2+1=9通り。 和が19の時は (8,11) (9,10)のみで、 マークを考えて (2C, x2C)×2=8通り。 和が20の時は(9,11) (10,10)のみで、マークを考えて,C×2C,+1=5通り。 和が21の時は(10, 11)のみで、 マークを考えて2C ×2C =4通り。 和が22の時は(11,11) のみで、 マークを考えて1通り。 合計9+8+5+4+1=27通り。 最後に両事象が同時に起こる場合を考える。 これは上の場合分けで異なるマークから取ることを考えると、5+4 +3 + 2+1 = 15通り。 121+27-15 133 したがって、 222 231

解決済み 回答数: 1