学年

教科

質問の種類

数学 高校生

赤い〰︎︎について。(α-1)+(β-1)>1かつ(α-1)(β-1)>1は何故ダメなんですか? 青い〰︎︎について。(α-3)(β-3)<0になる理由が分かりません💦🙇‍♂️

値 事項■ 89 2章 解と係数の関係、解の存在軍 基本 52 2次方程式の解の存在範囲 2次方程式 x2-2x+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 指針 2次方程式 2px ++2=0 の2つの解をα,β とする。 (1)2つの解がともに1より大きい。 →α-1>0 かつβ-1>0 /p.87 基本事項 2 (2)1つの解は3より大きく,他の解は3より小さい。→α-3とB-3 が異符号 以上のように考えると,例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし,判 | 別解 解答 別式をDとする。 解と係数の関係から =(-)-(p+2)= p²-p-2=(p+1)(p-2) 2次関数 f(x)=x2-2px+p+2 のグラフを利用する。 D =(p+1)(p-2)≥0, で学 フを (1) a+β=2p, aβ = p+2p 軸について x=p>1, )=80 3&f(1)=3-p>0 から 2≦p<3 (1) α>1,ß>1であるための条件は DO かつ (0-1)+(6-1)かつ(-1)(-1)0 35 do D≧0 から よって (p+1)(p-2)≥0 p≦-1,2≦p ①-e-(8-8)8-(8-10 (α-1)+(β−1)>0 すなわち α+β-2>0 から 2p-2>0 よってp>1 x=py=f(x) 23-p + a P (α-1) (B-1)>0 すなわち αβ-(a+β) +1>0 から Op+2-2p+1>01) (- よって p<3.. ...... ③ 求めるかの値の範囲は, 1, 2, ③の共通範囲をとって 30 2≤p<3 e-)-(8-8 1 1 B x (2)(3)11-5p < 0 から 12 3> (2) α <β とすると, α<3 <βであるための条件は (a-3)(B-3)<0 αβ-3(α+B) +9 < 0 p+2-3・2p+9 < 0 すなわち ゆえに よって b> 1/14 題意から、α =βはあり えない。 2つの 350 0 と です。

解決済み 回答数: 1
数学 高校生

フヘホについて質問です。3枚目の解答で210となっているところは√nが入ると思ったので10にしたのですが、なぜ違うかがわかりません。

293 太郎さんのクラスでは、確率分布の問題として、2個のさいころを同時に 投げることを 72回繰り返す試行を行い、2個とも1の目が出た回数を表す確 変数Xの分布を考えることとなった。 そこで 21名の生徒がこの試行を行った。 (1)次は二項分布 (アイ) に従う。このとき、k-アイ 123 とおくと,X=yである確率は,P(X=r)=C,D(1-0) エオ (r=0, 1, 2, k)である。また,Xの平均(期待値)はE(X) EX 標準偏差は (X)= である。 カ 解答群 0 k r ① ktr ② k-r (2)21 名全員の試行結果について、2個とも1の目が出た回数を調べたところ。 次の表のような結果になった。 なお、5回以上出た生徒はいなかった。 回数 0 1 2 3 4 計 人数 2 7 7 3 2 21 この表をもとに、確率変数 Y を考える。 Yのとり得る値を 0, 1,2,3,4と し、各値の相対度数を確率として, Yの確率分布を次の表の通りとする。 Y 0 1 2 3 4 計 P 21 22 1-3 13 2-2 ス シ 21 このときの平均はE(Y)= セン タチ 標準偏差は (Y) = √530 である。 21 (3)太郎さんは,(2)の実際の試行結果から作成した確率変数の分布について。 (1)のように、 その確率の値を数式で表したいと考えた。 そこで, Y=1, Y=2 である確率が最大であり,かつ,それら2つの確率が等しくなっている 確率分布について先生に相談したところ、その代わりとして、新しく次のよ うな確率変数Z を提案された。 先生の提案 Zのとり得る値は 0, 1, 2, 3, 4であり,Z=rである確率を P(Z=r)=α- (r=0, 1, 2, 3, 4) r! とする。ただし、を正の定数とする。 また,r=(x-1) 2-1 であり、 0!=1,11=1, 2!=2,31=6, 4!=24 である。

解決済み 回答数: 1