学年

教科

質問の種類

数学 高校生

赤線の部分がわかりません。

本冊 p.473 で紹介した,三角形の成立条件|b-ck<a<b+c ①が成り立つときa>0,b>0,c>0である理由を考えてみよう。 [検討 ① で, 16-c|≧0であるから,a>0 がわかる。 b≧c のとき,①から b≧c であるから b-c<b+c b>0 よって c>0 b<cのときも、同様にしてb>0, c0 が示される。 ①について 練習 (1) AB=2, BC=x, AC=4-xであるような △ABC がある。 このとき, xの値の範囲を求め ③ 86 よ。 [ 岐阜聖徳学園大) (2)△ABCの内部の1点をPとするとき,次の不等式が成り立つことを証明せよ。 AP + BP + CP < AB+BC+CA (1)△ABC が存在するための条件は 2(x-2)<2<4 三角形の成立条件 \b-c| <a<b+c ←|2(x-2)|=2|x-2| |x-(4-x)| <2<x+(4-x) すなわち 12(x-2)<2から |x-2|<1 よって -1<x-2<1 ゆえに 1 <x<3 a0 のとき また, 24は常に成り立つ。 したがって 1 <x < 3 別解 △ABC が存在するための条件は x+(4-x)>2, (4-x)+2>x, 2+x>4-x が同時に成り立つことである。 90 この連立不等式を解いて 1 <x< 3 40 PD+DC> PC (2) 直線 BP と辺 AC の交点をDとする。 △ABD において AB+AD>BD また,△PCD において ①+② から AB+AD+PD+DC>BD+PC AB+(AD+DC)+PD>(PB+PD)+PC ゆえに よって AB+AC> PB+PC ..... 同様に BC+BA >PC+PA ...... A ... ① D ...... ② P AQB AO \x\<α-a<x<a -0 三角形の成立条件 (b+c>a c+a>b la+b>c ←三角形の2辺の長さ 和は、他の1辺の長さ り大きい ←a> b, c > dならに a+c>b+d ←両辺にPDが出て 消し合う。 CA+CB> PA+PB ③~⑤の辺々を加えると 2(AB+BC+CA)>2(AP+BP+CP) よって AP+BP+CP < AB+ BC + CA ←両辺を2で割る 練習 (1) 鈍角三角形の3辺のうち, 鈍角に対する辺が最大であることを証明せよ。 ③ 87 (2) △ABCの辺BCの中点をMとする。 AB AC のとき 新品 <BAM <<CAMである

未解決 回答数: 1
数学 高校生

楕円についての問題なのですが、写真3枚目の解説でPC.CFの比がa:-ccosθなのはなぜ分かったのでしょうか?教えて頂きたいです。

楕円 +2 a2 + y 2 33楕円 62 199-33 =1 (a>b>0) 上に点Pをとる. ただし, Pは 第2象限にあるとする. 点Pにおける楕円の接線を1とし,原点を 通りに平行な直線を m とする. 直線と楕円との交点のうち, 第 1象限にあるものをAとする. 点Pを通りmに垂直な直線が m と交 ある点をBとする.また,この楕円の焦点で x 座標が正であるもの をFとする. 点Fと点Pを結ぶ直線が m と交わる点をCとする. 次 の問いに答えよ。 (1) OA・PB = ab であることを示せ. (2)PC = aであることを示せ. [大阪大〕 アプローチ 01-202 (楕円 (周) 上の点を設定するときは,ふつうはパラメータ表示を利用しま す ( 3 (D). いまの場合は P(a cos 0, b sin O) とおけます (ただし (aa, bβ) とおくこともある 34 (ハ) 三角関数を導入しておけば,三角関数の公式 (和積・合成・倍角・半角など) が使えて何かと便利です.本間は第2象限に 点をとるので cos00, sin0 0 であることに注意して下さい.また,楕 円の接線については32(イ). (D)2次曲線の離心率(定点からの距離と定直線までの距離の比が一定) に よる定義があります.これは詳しく覚えておく必要はありませんが,焦点か ら曲線上の点までの距離はきれいな式で求まることは頭に入れておいて下さ い つまり2点間の距離公式を利用しても最後は√がはずれるのです. (2)は計算でやれば必ずできるでしょうが、 かなり面倒な事になりそうで すそこでPF の長さが簡単に求まることはわかっているので, PC, CF の 長さの比を求めようと考えます. 合 x2 Placose, b sing) (書く0<x) とおくと、に + a² = 62 cos sin -x+ a by=1

未解決 回答数: 1