学年

教科

質問の種類

数学 高校生

135番なんですけど、回答の5行目までは分かるのですが、それ以降何言ってるかわかりません。あと回答の黒塗りされている場所の3行目以降も何言ってるかわかりません。

134 組立除法を用いて, 次の多項式Aを多項式Bで割った商と余りを求めよ。 複数になっているも (1) A=4x3+x2+6x-5, B=x-1 (2) A=3x3-x2+3, B= x +2 (3) A=2x-7x2+8x-8, B=2x-3 =+6 と30余る。 発展問題 135 多項式P(x) を (x-1)2で割ると余りが 4x-5, x+2で割ると余りが4 ヒント である。このとき, P(x) を (x-1)(x+2) で割ったときの余りを求めよ。 133 (1) x=√2-1 から, x+1=√2 の両辺を2乗して整理すると x2+2x-1=0 3 2 134 (3) x- で割り、割り算の等式を作る。 135 P(x) を (x-1)(x+2) で割ったときの余りを、更に (x-1)2で割る。 ゆえに 商x-2x+ 1, 余り -5 135 P(x)= を x+2 erとする Q₁(x される。 ①に代 *)=(x-1 =(x- ここで,P(x) るから PC 針■■ 等式P(x) = (x-1)(x+2)Q(x) +R (x) を作る。 (R(x)は ax2+bx+c と表される) (x-1)(x+2)Q(x) は (x-1)2で割り切れるか ら, R(x) を (x-1)2で割ったときの余りは, P(x) を (x-1)2で割ったときの余り (=4x-5) と一致する。 よって R(x)=ax2+bx+c =a(x-1)2+4x-5 あとは, αの値を求める。 P(x) を (x-1)(x+2) で割ったときの商を Q(x) とする。 このときの余りは、2次以下の多項式または0で あるから, ax2+bx+c (a, b, cは定数) とおけ る。 よってP(x)=(x-1)(x+2)Q(x)+ax²+bx+c 更に,P(x) を (x-1)で割ると余りが4x-5で あるから P(x)=(x-1)(x+2)Q(x)+α(x-1)+4x-5 ...... ① と表される。 P(x) を x+2で割ると余りが-4であるから P(-2) =-4 また, ① から P(-2)=9a-13 よって 9a-13=-4 ゆえに a=1 したがって, 求める余りは (x-1)2+4x-5 すなわち x2+2x-4 別解指針■■■ 等式P(x)=(x-1)2Q(x)+4x-5を作る。 Q(x)をx+2で割ったときの余りをとする と,Q」(x)=(x+2)Q2(x) + r と表される。 よって P(x)=(x-1)^{(x+2)Q2(x)+r+4x-5 =(x-1)(x+2)Q2(x)+(x-1)'r+4x-5 ゆえに、求める余りは(x-1)+4x5 あとは, rの値を求める。 また、②から よって gr これを② P(x)=(x- =(x- ゆえに、 求め 136 (1) 移項 左辺を因数分 よって ゆえに x x (2) 左辺を因数 (3 よって 3 ゆえに (3)左辺を因 よって ゆえに x 2 (4) 左辺を因 よって = ゆえに (5) 左辺を因 よって ゆえに 137 (1) P(= P よって, P を因数分解 P(x) =0 カ したがって (2) P(x)=1

回答募集中 回答数: 0
数学 高校生

真ん中らへんの式で、pについて平方完成する所についての質問で、なぜここで平方完成しようと思うのですか?円のベクトル方程式に帰着するためですか?また、そうするためだとしたら、ベクトル方程式の形は、写真の2枚目にある5個の型は頭に入れるべきということですか?回答よろしくお願いします。

例題 37 ベクトルと軌跡 平面上に ∠A=90° である △ABCがある。 この平面上の点Pが AP BP + BP・CP+CP・AP = 0 ・・・ ① 思考プロセス を満たすとき,点Pはどのような図形をえがくか。 基準を定める D Go ・直 (1 (2 ますか (3 ①は始点がそろっていない。∠A=90°を使いやすくするため。 基準をAとし,① の各ベクトルの始点をAにそろえ 図形が分かるP(b) のベクトル方程式を導く。 例 直線: p=a+αや(カーan = 0 の形 円:1p-d=rや(カーム)(カーム)=0 Action» 点Pの軌跡は,P(n) に関するベクトル方程式をつくれ A えがく 解AB=1, AC=c, AP = p とおくと, 始点をAにそろえる。 ∠A=90° より b. c = 0 このとき ①は Bをかためる 2集より 円かない? と予想。 + ) + ( a − ) · (x − 1) = 0 p⋅ (pb)+(pb) • (p−c) + (b −c) · p=0 32-26-2c p=0 1³ - 2² ² (b+c) · b = 0 3 + 2 1 1 b + c | ² = 0 9 2 b+c = 13 3 b+c 6 (1) sこす動特P = 15-b.c=0 (2) 2次式の平方完成のよう に考える。 0 (祝) る k t k よって b+c 10より 例題 ここで, で表される点は△ABCの重心Gであるか 20 だいたいこ 3 A ブク軌跡から、②は ||GP| = |AG| したがって, 点P は △ABCの重心 (2) 2円か垂Gを中心とし,AG の長さを半径と (1) | 重心G は, 線分 BC の中 点をMとし, 線分AM を 直二等分する円をえがく。 B 2:1に内分する点である。 線さま以 M C (3) 〔別解〕 (6行目までは同様) b. {b 2 sa (b+c)}=0 =0より,AE=2/22 (+)とおくと, 点PはAEを直径とする円である。 と b+c AP EP=0 このとき,中心の位置ベクトルは であり,これは 3 △ABC の重心Gである(以降同様) らまん次以お As 満たす

解決済み 回答数: 1