学年

教科

質問の種類

数学 高校生

数Ⅰの問題です 写真の青線の部分の意味がわかりません 教えてください

基本 例題 45 √3 が無理数であることの証明 00000 命題「n は整数とする。n' が3の倍数ならば,nは3の倍数である」は真で ある。これを利用して, √3 が無理数であることを証明せよ。 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 基本44 √3が無理数でない (有理数である)と仮定する。このとき、3=r(rは有理数)と仮 定して矛盾を導こうとすると,「3=の両辺を2乗して、3=r」となり、ここで先に進 めなくなってしまう。そこで,自然数 α, bを用いて3=1(既約分数)と表されると仮 定して矛盾を導く。 解答 √3 が無理数でないと仮定する。 このとき √3 はある有理数に等しいから, 1以外に正の公約 a 数をもたない2つの自然数α, bを用いて3 = と表される。 b ゆえに a=√36 両辺を2乗すると a2=362. ・① よって, αは3の倍数である。 α2が3の倍数ならば,αも3の倍数であるから,kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって, 62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 したがって3は無理数である。 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という (数学A参照)。 下線部分の命題は問題 文で与えられた真の命 題である。 なお, 下線部 分の命題が真であるこ との証明には対偶を利 用する。

未解決 回答数: 1
数学 高校生

短い方と言われているので2つの正方形の面積は一致しないことはわかります。ですが、右の指針(?)が書いたある欄に80センチの半分「以下」と書いてあるにも関わらず、0<4x <40となっており違和感を感じます。指針の通りに解答を書くならば0<4x≦40ではないでしょうか。(私の... 続きを読む

例題 80 2次不等式の応用 **** 曲げて正方形を2つ作る。 2つの正方形の面積の和が218cm以上となる 長さ80cmの針金がある. これを2つに切って, それぞれの針金を折り ようにするには、針金をどのように切ればよいか。 短い方の針金の長さの 範囲を求めよ. 考え方 まず何を文字でおくか考える. (2) 例題 実数x,yc (1) z=x2 (2)x0. 考え方は(x 3x+y しかし 変数関 徳島文理大) ここでは,短い方の針金の長さの範囲を求め ったので, で, 短い方の針金の長さを文字でおく。 このとき, 右の図のように針金は正方形に折 り曲げて考えるので,文字はxではなく, 4xcm とおく。 針金の長さをxcm とおくと... C cm 4 針金の長さを4xcm とおくと... 解答(1) 04x <40 より, 0<x< 10 解答 短い方の針金の長さを4xcm とすると, 長い方の針金の 長さは, 80-4x=4(20-x) (cm) xcm 2つの正方形の1辺の長さは, それぞれ, x cm, ① XC 020-x (20-x) cm だから, より. I- x2+(20-x)^≧218 2x2-40x+400≧218 2x2-40x+182≧0 x2-20x +91 ≧ 0 0s (1-0)(T- 2 -1) 短い方の針金は 80cmの半分以下で ある. 2つの正方形の和が 218cm² 以上を不等 (x-7)(x-13)≧0(DS)(D) 式で表す. x≦7,13≦x ...... ② ①,②より, 0(S-)(Sto ② 02 (S-1) (STD (k)-0の特別式D AD ② 0<x≦7 ① よって, 0<4x≦28 だから, 短い方の針金の長さ の範囲は, 0cm より長く, 28cm以下とすればよい. 0 17 10 13 x

未解決 回答数: 0
数学 高校生

(2)って何故このようになるのでしょうか

130 第2章 2次関数 Check 例題 69 最小値の最大・最小 *** 例題 7 (1) y= (2) y= 岐阜大・改) (ア (イ は実数の定数とする. 本の関数f(x)=x+3x+mmの定数における最小値を おく. 次の問いに答えよ. ただし, m (1) 最小値g をmを用いて表せ. (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 68と同様に考える. 軸が定義域に含まれるかどうかで場合分けする。 (2)(1)で求めたg をmの関数とみなし, グラフをかいて考える。 9432 32 解答 (1)f(x)=x2+3+m=xt- +m- グラフは下に凸で, 軸は直線 x=- (i) +222のとき 7 つまり,<- のとき グラフは右の図のようになる. したがって,最小値 g=m²+8m+10(x=m+2) 3 (ii) m≦! ≦m+2のとき 2 つまり、1ma12のとき 3 場合分けのポイント 例題 68 (1) と同様 NT mm+2 小太郎 322 2 グラフは右の図のようになる. したがって, 最小値 最小 m m+2 9 g=m- x=- 4 3 x= 2 「考え方 y お 解答 (1 (iii) m>-- のとき グラフは右の図のようになる。 したがって,最小値 g=m²+4m (x=m) (2)(1) より,gmの関数とす ると,グラフは右の図のよう になる. -4 72- 3 最小 mm+2 94 2 (iii) (vi) m軸,g軸となるこ 注意する よって,gの最小値は, (i) -6(m=-4 のとき) 10 m 15 大気 (ii) 4 23 小 最小 4 F 練習 *** を求めよ. 69g をmを用いて表せ. また, m の値がすべての実数を変化するとき,gの最大値 xの関数f(x)=2x2+3mx-2mの0≦x≦1 における最小値をgとするとき *

未解決 回答数: 1