学年

教科

質問の種類

数学 高校生

(1)のような問題で3-√13の点を取ってグラフを書きたい時どうすればいいですか?

2次関数のグラフとx軸の共有点の座標 次の2次関数のグラフとx軸の共有点の座標を求めよ。 (1) y=x²-6x-4 基例題 本 89 CHART & GUIDE x= @+ (2)_y=-4x²+4x−1 答 (1) y=0 とおくと x2-6x-4=0 これを解いて 2次関数y=ax2+bx+c のグラフとx軸の共有点のx座標は, y=0 とおいた2次方程式 ax²+bx+c=0 の実数解である。 2次方程式 ax+bx+c=0 の解法 ① 因数分解 または ② 解の公式 x= -(-6)±√(-6)-4・1・(−4) 2・1 6±√52 6±2√13 よって 共有点の座標は =3±√13 (3-√13, 0), (3+√13, 0) (2) y=0 とおくと -4x2+4x-1=0 すなわち 4x²-4x+1=0 左辺を因数分解して (2x-1)²=0 ゆえに 2x-1=0 よってx=12/2 共有点の座標は ( 12.0) (1) 3-√13 (2) -b±√b²-4ac 2a y O -4 YA /3+√13 x -1 接点 O 1 2 <<< 基本例題 86,87 の活用 ²-(1-x=- a x ←α=1,b=-6, c=-4 xの係数が偶数であるか ら,6=26′として -b'±√√b²-ac を用いてもよい。 163 両辺に-1を掛けて x 2の係数を正にする。 重解, グラフはx軸に x=-1/22 で接する。 5 Lecture 式が因数分解されている2次関数 2次関数の式がy=(x+1)(x-3) のように因数分解されているとき、y=(x+1)(x-3) y=0 とおいた2次方程式は (x+1)(x-3)=0 となるから, グラフとx V. 3 軸の共有点のx座標はx= -1, 3 とすぐにわかる。 このことを利用すると, 関数のグラフが右のようになることもすぐにわ かる。

未解決 回答数: 1
数学 高校生

(2)の問題で最大値がない理由を教えてください。

30 基例題 本 72 2次関数の最大値・最小値 (2) 関数 y=x2+2x-1 の定義域として次の範囲をとるとき, 各場合 について, 最大値、最小値があれば,それを求めよ。 (1) -3≦x≦0 (2) −2<x<1 CHART & GUIDE 1 まず, 平方完成して、 グラフをかく。 2 与えられた定義域に対する値域を求める。 3 値域の中で,最大値、最小値をさがす 。 最大 端の点が入っているかどうかを確かめる。 -3 注意 2次関数の最大・最小 グラフをかき、頂点と定義域の端の点に注目 -1 O 解答 にな方向から 関数 y=x2+2x-1 すなわち y=(x+1)-2のグラフは下に凸の放物線であり、 その頂点は(-1,-2), 軸は直線x=-1 である。(第一 f(x)=x2+2x-1 とおくと f(-3)=2, f(-2)=-1, f(0) = -1, f(1)=2, f(2)=1 各定義域での関数のグラフは、 下の図の実線部分のようになる。 (1) y (2) ya (3) 2 -2 x 最小 値域は -2≦y≦2 であり x=-3 で最大値 2 x=-1で最小値-2 <<< 基本例題 71 2 -2-1 V 10 1 x -1 -2 (3) 0≤x≤2 最小 値域は -2≦y<2であり 最大値はない x=-1で最小値-2 TRAINING 72② 次の関数に最大値、最小値があれば,それを求めよ。 I YA 7-- 最大 -1 12 HO 準7: -1 -2 関数 を定め 例量 CHAR & Gu X 解 最小 値域は-1≦y≦7 であり x=2で最大値7 x=0 で最小値-1 最大・最小の問題では定義域が重要! 最大値,最小値は定義域によって変わる。 単純に「頂点のところで最大か最小」 とは限らない。 ・一般に,頂点と定義域の端の点が最大・最小の候補になる。端の点が入るかどうかも チェックしよう。 慣れてきたら,かいたグラフをもとにして直ちに(値域を書くのは省略して)最大 nonton21 . 値・最小値を求めてもよい。 f

未解決 回答数: 1
数学 高校生

場合分けが分からないので 詳しく解説お願いします

基 本 ! 例題 90円と直線の共有点の個数 点と直線の距離の利用 円 x2+y2=5と直線 2x-y+k=0 の共有点の個数は,定数kの値によって, どのように変わるか調べよ。 ・ CONSOPO CHART & GUIDE 円と直線の位置関係 点と直線の距離の利用 ①円 円の中心と直線の距離をd, 円の半径をrとすると, 次のことが成り立つ。 d<r ⇔ 異なる2点で交わる ( 共有点2個) d=r ⇔ 接する (共有点1個) (共有点 0 個) dr⇔共有点をもたない 円の中心と直線の距離 dを求める。 距離dと円の半径rを比較したのとる値で場合分けして答える。 解答 円の半径は r= √5 円の中心 (0,0)と直線の距離dは 2-0-0+kk 2²+ (−1)² √5 d= ! d<r となるのは |k| √5 IN d = r となるのは これを解いて すなわちん <5のとき。 SAT これを解いて <√√5 -5<k<5 |k| | LO √5 k=±5 k √5 YA/y=2x+k/ O k 15 √5 -5 =√5 すなわち|k|=5のとき。 √√5 d> となるのは これを解いて k<-5,5<k- 以上から, 共有点の個数は -5<k<5のとき2個; >√5 すなわち k>5のとき。 k=±5のとき1個; k <-5,5くんのとき0個 x ....... r = 5 ではない! ◆点 (x1, y1) 直線 ax+by+c=0 の距離 は -d<r d=r d>r ax₁+by₁+c √a² + b² 絶対値を含む 方程式・不等式 c>0 のとき |x|=c の解は x=±c |x|<cの解は円(s) -c<x<c |x|>c x<-c, c<x SPRATI X

回答募集中 回答数: 0
数学 高校生

(2)の線を引いたところの変形がわかりません。 教えて下さい🙇

298 定積分と導関数 基礎例題 186 次の関数をxで微分せよ。 (1) y=f(x+t)edt CHARI & GUIDE 定積分と導関数 IMEA (2) Ut 1500=2+1+²8=Quic (1) 積分変数tに無関係なx を の前に出してから,両辺をxで微分する。 よって (2) _y=²* cos²t dt (2) 上端,下端ともにxの関数であるから、直ちに上の公式を適用してはいけない。 F'(t)=cos2t 1 cos2t の原始関数を F (t) とする。 ... y=F(2x)—F(x) ____ d*f(t)dt = f(x) aは定数 dx Ja ■解答■ (1) S. (x+t)dt=xSoe'd Stedt であるから 2② 右辺の定積分を, F(t) を用いた形で表す。 ③両辺をxで微分する。 F (2x)の微分に注意。 =(2x+1)e*-1 (2) cos't の原始関数を F(t) とすると 231=5025 に出す。 y=(x) fied+x(can Seal)+ axSoted fieldt の微分は、風の Jo 導関数の公式を利用。 ・2x =S*e'dt+x•e*+xe*=[eª]* + 2x +2xe* costdt=F(2x)-F(x), F'(t)=cos2t d 2x y'= cos'tdt=2F'(2x) — F'(x) dx Jx =2cos22x-cos'x =thiniat d (g(x) [参考] f(t)dt=f(g(x))g'(x)f(h(x)) h'(x) dx Jh(x) 証明 f(t) の原始関数をF(t) とすると F'(t)=f(t) よって EX 186③ 次の関数をxで微分せよ。 (1) y = sin2tdt So (g(x) de Snc f(t)dt = d [F(x)]" x = d (F(g(x))-F(h(x))} dx Jn(x)" dx dx =F'(g(x))g'(x)-F'(h(x))h'(x) =f(g(x)) g'(x)-f(h(x))h'(x) ←xは定数とみて,「の前 定積分の定義 IN HET 合成関数の導関数 定積分で表され 基礎例題 関数f(x)= CHART&GUIDE の公式である。 合成関数の導関数 CHART &GUID この式で g(x)=x, h(x)=α(定数)の場合 が.上の *x (2) y=S codt (3) y=f*(x-t)sint 解答 1 f'(x) f'(x)=0 と 0≤x≤x T ここで ゆえ f(x ya

回答募集中 回答数: 0
数学 高校生

数1のx,yについての二次式の因数分解についての質問です! 写真のようにxについて降べきの順に整理するときに最初のx²だけ省くのか分かりません。 この方法でやれば因数分解がうまくいくことは分かるんですが、あんまり納得できていないです 分かる方がいれば説明お願いしま... 続きを読む

:) x² + 4x9² 39 x(x+4y 解説 白チャートで で視聴できる 書籍ご購入の 追加 白チャー ■基礎固 基本的な 解説して にも配 な生徒で 例題は、 スモール 進めるこ タ どこでも ■共通テン 巻末の実 る長文問 エスビュ 書をタブレッ いつでも、と 38 ① 23 1919 準 18x,yについての2次式の因数分解 次の式を因数分解せよ。 (1)x+3.xy+2y²-5x-7y+6 は、大学入学共通テストの準備・対策向きの問題であることを示す。 (2) 2x²-5xy-3y²-x+10y-3 CHART & GUIDE について降べきの順に整理する。 定数項となる」の2次式を因数分解する。 xの2次式とみて、たすきがけの図式を完成させる。 xについての2次式の因数分解 1つの文字について整理して, たすきがけ (1) +3xy+2y^²-5x-7y+6 =x2+(3y-5)x+(2y²-7y+6) =x+(3y-5)x+(y-2) (2y-3) ={x+(y-2)}{x+(2y-3)} 6 =(x+y-2)(x+2y-3) 第 2 → 4 B 1 -3 → -3 2 6 -7 (2) 2x²-5xy-3y²-x+10y-3 A 1 =2x²-(5y+1)x-(3y²-10y+3) =2x²-(5y+1)x-(y-3)(3y-1) 3 2 注意 解答では、xについて整理し Z て <<<基本例題 14, 標準例題 17 日 .. y-2 y-2 2y-3 3y-5 ={x-(3y-1)}{2x+(y-3)} =(x-3y+1)(2x+y-3) -3 → -9 01 -(3y-1) → -6y+2 X -1--1 y-3 3-10 ◆ x について整理。 たすきがけ A DO... ◆ たすきがけ B (*) たすきがけ -5y-1 ← x について整理。 ★たすきがけ ⑩ なお,たすきがけ ⑩が考 えやすくなるように(*) ではxの1次の項を y-3 +(-5-1)xと書いてお くのもよい。 ズーム UP review 因数分解の基本を振り返ろう! 例題17を振り返ろう! 多くの文字を含む式の因数分解では, 次数が最低の文字について整理しましょう。 x2+3xy+2y2-5x-7y+6 は, xについて2次,yについても2次である。 よって,どちらの文字について整理してもよいが, -x の項の係数は 1 2 の項の係数は 2 2 次の項の係数が簡単なx について整理すると x2+3xy+2y²-5x-7y+6=x²+(3y-5)x+(2y²-7y+6) 例題14を振り返ろう! Ax'+Bx+Cの因数分解では, たすきがけ を利用しましょう。 acx2+(ad+bc)x+bd=(ax+b)(cx+d) 「2y²-7y+6の因数分解 の係数2を2数の積に分解。 2 定数項6を2数の積に分解。 3 たすきに掛けて, その和が -7 となるものを見つける。 x 1 -6→-12 -1 → -1 6 -13 -4 2 01 2 2 x2+(3y-5)x+(y-2)(2y-3) の因数分解 1 x²の係数1を2数の積に分解。 2 定数項 (-2)(2x-3) を2つの積に分解。 -2 -3 → 6 ← 定数項6を2数 (1) (6) と分解した場合 -3 -7 定数項62数(-2)(−3) と分解した場合 ↑xについて整理しているから, は数と考える。 39 1章 3 因数分解

未解決 回答数: 1