学年

教科

質問の種類

数学 高校生

常用対数についてです。 イの解説でいきなり5と6の常用対数をとっている理由が分かりません。教えてください🙏

22 306 基本 例題 191 最高位の数と一の位の数 00000 126 は 桁の整数である。 また, その最高位の数は、一の位の数 は?である。ただし,logo2=0.3010, logo3 04771 とする。 logo N の整数部分, 指針 (ア)(イ) 正の数Nの桁数は 最高位の数は 10g10 N の小数部分に注目。 [慶応大 基本188) なぜなら,Nの桁数をkとし,最高位の数をα (a は整数, 1≦a≦9) とすると ・10k 1≦N<(a+1)・10k-1 ← a000(0がk-1個) から α999 (9がk-1個)まで。 - 各辺の常用対数をとる。 ⇔k-1+10g0a≦log10N <k-1+10g10(a+1) 10g10 (α・10-1)=10g0a+10g 10 ⇔10gio (a・10k-1)≦10g10N<10g10((a+1)・10k-1} よって, 100g10 N の整数部分をp 小数部分をg とすると (ウ) 12',122,12, p=k-1, logi0a≦g <log10(a+1) を計算してみて、一の位の数の規則性を見つける。 (ア) 10g10126=601ogio (223)=60(210g102+10g103) 解答 【10g10126=6010g10 12, =60(2×0.3010+0.4771)=64.746 12=22.3 ゆえに 64<log10 1260<65 (aе.0 (ae.o sas80 よって 1064 <126 <1065 したがって, 126 は 65 桁の整数である。 (イ)(ア)から 19 log1012=64+0.746 ae 100g (イ)の別解 (ア) から 1260=1064.746=1064100.746 ここで 10g105=1-10g102 =1-0.3010=0.6990 180 gol 401 1000 =0.3010+0.4771=0.7781 10gto6=10g102+log10 3 log105 <0.746 <10g106 5<100.7466 Segol ゆえに すなわち よって 5・10641064.7466・1064 すなわち 5.1064<1260<6.1064 したがって, 12% の最高位の数は 5 010.0 (ウ) 12′,122,123,124,125, の一の位の数は、順に 2, 4, 8, 6, 2, ...... となり、4つの数2,4,8,6 を順に繰り返す。 60=4×15であるから, 12% の一の位の数は 10°/10°.746 <10'であるか ら, 100746 の整数部分が 12 の最高位の数である。 ここで, log105=0.6990 から 100.6990=5 10g10 6 = 0.7781 から 100.7781=6 100.6990 5100.746 <100.7781 から 5<100.7466 よって、最高位の数は5 122 (mod10) である 6 から12"の一の位の数 は, 2” の一の位の数と同

解決済み 回答数: 1
数学 高校生

ここの単元がほんとに苦手で、赤ペンで解説を写しましたがよくわかりません。 214も215も半径を1としているのに、上の例では半径が2になるのはなぜでしょう。 また、点Pの座標ってどうやって出しているのでしょうか。根本的にわかっていませんがどうか教えてください🙏

PO ① 57 の三角比の定義 右の図において,∠AOP = 0 のとき sin = cos =* r tan 0=y x (ただし, tan 90° は定義されない) ② 180°-0の三角比(0°0≦180°) sin (180°-0)=sin 0 cos(180°-0)=-cos tan (180°-8)=-tan0 例68鈍角の三角比 150°の正弦, 余弦, 正接の値を求めよ。 ya P(x, y) A -T 0 ▼0°<< 90° のとき, POINT57で定義された三角 比は, p.92 POINT53で定 義した三角比と同じになる。 P(x,y) y 0 8 x y A T x BIS 解答 右の図で,∠AOP=150°とする。 OTI nie () 半円の半径を = 2 にとると, 点Pの座標は(√31) そこでx=-√3, y=1 として おいて P 1 150° sin 150°= = 1 r 2' cos 150°=- =√3 √√3 801 200 -3 O A r 2 2 ESI 200 (S) tan 150°= 1 x √3 √3 は60 2 1 30° √3 基本 第4章 214 180°の正弦,余弦,正接の値を求め よ! 満たすりを 180°のど。 1800 半円の半径をしにとると、 点の皆様は(-10)口 sin 180°= そこでた小4=0として COS(80° Gin: = = 0 r Tan (80 = 1. 2 for 0 0 TG) (S) □215 90°の正弦、 余弦の値を求めよ。 満たすのを求め 400 sin(180-90)=sin90° 109 (180-90%) 上の図でLA0P=90°とする 半円の半径を1にとると 点の座標は(0.1) そこで大20.9=1として、 sin90% 4=1=1 cos 90° = 14: 9:0 COS90% ORI ee 209

解決済み 回答数: 1