学年

教科

質問の種類

数学 高校生

465の(1)なぜθをかけているのかわからないです 最後まで解説おねがいします‪( . .)"‬

題 とき、 No. 33 正弦定理・余弦定理 ( 2 ) Date B 465 △ABCにおいて,次のものを求めよ。 (1) A: B:C=2:3:7 のとき A, B, C, a:b *(2) sin AsinB: sinC=√3:√74 のとき B sinsinsi 半解答編 -115 点Bから辺 CA に垂線 A * * * 0 <0 S 120° \45° C E B √√3)2 √3 るから 32=(3√3)2+α2-2・3√3.acos30° BH を下ろすと b=AH+CH =260 =ccos A + acos C =5√2 cos45°+10cos 30° =5+5√3 = 5(1+√3) (4)(解1)[先にaを求める] 余弦定理により,62=c2+α2-2cacos B であ これを解くと >0であるから H b. 4646-c=2から b=c+2 余弦定理により ① 03 2668 6/10 52=b2+c2-2bccos 120°+S) DA (5) ① を代入すると 30° a 52=(c+2)2+c2_2c+2ccos120° 整理して 3(c2+2c-7)=0 =-1±2/2 -√3) ゆえに a2-9a+18=0 (I) これを① に代入して これは6>0を満たすA b=1+2√2 Ta これを解いて a=3,6 [1] a=3のとき amia AS 206 AS- = A nie 余弦定理により 15° cos A=- 32+(3/3)2-32 -601 √3 2.3.3√3 三弦定理 ゆえに A=30° って C=180°--(30° + 30°)=120° [2] a=6のとき 0001 0001 00000 465 (1) A: B:C=2:3:7から A=20, B=30, C=70 とおける。 A+B+C=180°であるから (1) S=2x/20 +30 + 70 = 180° すなわち 120=180° よって 0=15° ゆえにAA=30°,B=45°,C=105° 余弦定理により お COS A である ゆえに よって 32+(3/3)2-62 A=90° 2.3.3√3 C=180° (90°+30°)=60° 正弦定理により (S) =0 8 205 ABC a: b=sinA: sin B 804 = sin 30° sin 45° =12/2 : 1 √2 . 2 以上から (2) 工法定番に a-3 1

未解決 回答数: 0
数学 高校生

写真のところの式変形はどのように行なっているんですか?

う 10 確率の最大値 赤, 青, 黄3組のカードがある。 各組は10枚ずつで,それぞれ1から10までの番号がひとつず つ書かれている.この30枚のカードの中からん枚 (4≦k≦10) を取り出すとき, 2枚だけが同じ番 で残りの(k-2) 枚はすべて異なる番号が書かれている確率をp (k) とする. ( 4≦k≦9) を求めよ. p(k+1) (1) p(k) (2) (k) (4≦k≦10) が最大となるkを求めよ. (福岡教大/一部省略) 確率の最大値は隣どうしを比較 確率力 (k) の中で最大の値 (または最大値を与える) を求める 問題では,隣どうし [pkpk+1)] を比較して増加する [p(k)≦p(k+1)] ようなんの範囲を求 める. p(k)とp(k+1) の大小を比較すればよいのであるが, p(k) とp(k+1)は似た形をしているの 力(k+1) で を計算すると約分されて式が簡単になることが多い. p (k) である. -≧1⇔p (k)≦p (k+1) 解答量 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30C通りあり,これ らは同様に確からしい。このうちで題意を満たすものは、同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方が 3 C2 通り, 異なる番号 (-2)枚について番号の選び方が gk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. よって, p(k)= 10.3・9Ck-2・3k-2 30 Ck p(k+1) 9Ck-1.3k-1 p(k) 30! 30 Ck 30Ck+1 9Ck-2.3k-2 (k+1)! (29-k)! 30! k! (30-k)! (k-1)! (10-k)! 100% 9! p(k+1) p (k) となり, p (k) が最大となるには 6. 18 -≧ 1⇔ SE p (k+1) p (k) (k-2)! (11-k)! 9! 3 (k+1) (11-k) -≧1 (k-1) (30-k) -3 3(k+1) (11-k) (-1)(30) (2) p(k)≦p(k+1) ⇔ ⇔3(k+1)(11-k)≧(k-1)(30-k)⇔k (2k+1)≦63..... 5·(2.5+1)<636・ (2・6+1) であるから, ①を満たすんはk=4,5で①の等 kは4~9の整数 号は成立しない . よって p(4) <p (5) <p(6), p(6) > p (7) > p (8) > p (9) > p (10) 10.3 を約分 YouTube & Fa 1 順に. 1 30Ck+1' 30Ck 9Ck-1. 9Ck-2 最後の3は3-1と3-2 を約分. p(k)>0, p(k+1) >0 10 演習題 ( 解答はp.50 ) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて,当たりかはずれか を確認したのち,もとに戻す試行をTとする。 試行Tを当たりくじが3回出るまで繰り 返すとき,ちょうど2回目で終わる確率をp (n) とする。 改 (1) 試行Tを5回繰り返したとき,当たりが2回である確率を求めよ. (2) n≧3として、p(n) を求めよ. (3) p(n) が最大となるnを求めよ. ( 芝浦工大) 10.11.12 回目が3回目の当たり なので,それまでに当た りは2回 (3) は例題と 同じ手法を使う. 43

回答募集中 回答数: 0