学年

教科

質問の種類

数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
数学 高校生

この疑問点に答えていただきたいです!

O 例題 32 同じものを含む順列の応用 自色カードが5枚, 赤色カードが2枚, 黒色カードが1枚ある。同色の は区別できないものとして、この8枚のカードを左から1列に並べると 一次のような並べ方は,それぞれ何通りあるか。 赤色カードが隣り合う 2 両端のカードの色が異なる 端が白色カードで, 赤色カードが隣り合わず,かつ,どの赤色カードも p.293 基本事項 2 基本 8,12 黒色カードと隣り合わない CHART & SOLUTION (1) 隣り合う→1つのものとみる (枠に入れる)。 白白白白赤赤黒白 (2) (Aでない)= (全体)(Aである) の活用。 すなわち (両端が異なる色) = (すべての並べ方) (両端が同じ色) (3) 隣り合わない→後から間や両端に入れる 赤白赤 白黒白 解答 (1) 2枚の赤色カードを1枚とみなして 775 7! 5C3 -=42 (通り) 5! 8! -=168(通り) 5!2! (2) 8枚のカードの並べ方は、 全部で 両端のカードが同じ色になる場合の数を求めると ( 2 [1] 両端が白色のとき 白色カード3枚、赤色カード2枚, 黒色カード1枚を並べる方法の数で [2] 両端が赤色のとき 白色カード5枚, 黒色カード1 6! 枚を並べる方法の数で 6 (通り) 5! - よって, 求める場合の数は 168-(60+6)=102 (通り) 3) 白色カードを5枚並べ、その間と左端の5個の場所から 3個の場所を選んで赤色カード2枚と黒色カード1枚を並 べればよいから、求める場合の数は 3! -=30(通り) 2! 6! 3!2! -=60(通り) ww RACTICE 32 ③ AGOYAJOの8個の文字をすべて並べてできる ”をともに含む順列は なぜC3x 基本例題12 基本例題 8 基本例題 12 左の解答において同じも のを含む順列の数の求め方 は, p.300 の CHART & SOLUTION の② の方式 を使った。 1の方式なら (1) 7C5×2! (2) (全体) = gC5×3 C2 (両端が白) = 6C3×3Cz (両端が赤) = 6C5 (3) 53×2 となる。 5個の場所から3個の場 所を選ぶ→5C3通り 赤2枚,黒1枚を並べる 通り

回答募集中 回答数: 0
数学 高校生

(2)△ABCで∠Aおよびその外角の二等分線が直線BCと交わる点をそれぞれD,Eとする およびってなんですか? 答えの図を見る限り内角二等分線と外角二等分線のどちらもしているのは何故ですか? 外角の二等分線しか言われてないのに、、

出版 /www.chart.co.jp/ 328 00000 基本例題 59 三角形の角の二等分線と比 1 AB=3,BC=1,CA=6である△ABCにおいて、<A の外角の二等分 線が直線BC と交わる点をDとする。 線分BD の長さを求めよ。 線分 DEの (2) AB=4,BC=3, CA=2 である△ABCにおいて、<A およびその外 Ip.325 基本事項 2 の二等分線が直線BCと交わる点を,それぞれD, E とする。 長さを求めよ。 CHARTO SOLUTION 三角形の角の二等分線によってできる線分比 (線分比)=(三角形の2辺の比) ・・・・・・ 内角の二等分線による線分比 内分 外角の二等分線による線分比 → 外分 各辺の大小関係を,できるだけ正確に図にかいて考える。 解答 (1) 点Dは辺BC を AB: AC に外分するから BD: DC=AB: AC AB:AC=1:2 であるから BD: DC=1:2 BD=BC=4 よって D (2) 点Dは辺BC を AB : AC に内分するから BD: DC=AB:AC=2:1 1 2+1 ゆえに よって ゆえに DC= また、点Eは辺BC を AB : AC に外分するから BE: EC=AB:AC=2:1 CE=BC=3 -xBC=1 DE=DC+CE=1+3=4 A B B D C JALAB : AC-3:6 WAGHAHA) C PRACTICE ... 59 ② (1) AB=8,BC=3,CA=6である△ABCにおいて, BCと交わる点をDとする。 線分CD E Ha 基本 64 <> ← BD: DC=1:2 から BD: BC=1:1 AB:AC=4:2 基本 △A Eと O AS BAA &&T S=AD 2=38 1=GA_AL 30 STS CHE 解 直線 直編 ① 2 1

回答募集中 回答数: 0