学年

教科

質問の種類

数学 高校生

この問題の意味が分かりません。詳しく教えてもらえると嬉しいです。

= ANBOC 立つ。 ヨッ ように A∩B ={0,k} であるから, 集合Aの要素に0が含まれる。 t < s より s-t> であるから, 集合A の要素について s2-st+4=s(s-t) +4>0 よって、Aの要素のうち0となるのはピーヒー12である。 すなわち t2-t-12=0 問題 44k, s, tは正の整数で, t<s とする。 A = {2, s'-st+4, e-t-12}, B= {0, s2-3s+2, s2 -t2} に対して, A∩B={0, k} が成り立つとき, k, s, tの値をそ れぞれ求めよ。 (東京工科大 改) A, B の共通部分に 0 が 含まれているから0A の要素の1つである。 s-st+4は正の値しか とらないから 0 である ことはない。 (t-4) (t+3) = 0 より t = -3, 4 2}, >0より t=4 正の Q このとき A={2, s2-4s+4,0}, B ={0, s-3s+2, '-16} の値を代入する。 A∩B ={0,k} より, 集合 A, B には共通する要素がもう1つある。 A, B には0以外にも共 (ア) sa - 4s +4=s-3s+2のとき s = 2 このとき, t<s を満たさないから不適。 (イ) s' - 4s+ 4 = s2-16 のとき このとき, t<s を満たす。 s=5 よって, A={2,9,0}, B = {0, 12, 9} となり A∩B ={0, 9} すなわち k = 9 (ウ) s2-3s+2=2のとき 整理すると s(s-3)=0 > より s=3 このとき, t<s を満たさないから不適。 範囲 (エ) s' - 16=2のとき s2 = 18 となるが, sは正の整数であるから不適。 (ア)~(エ)より k=9, s = 5, t = 4 ( 通する要素がある。 (ア)(イ)は≠2 (共通す る要素が2以外)の場合 である。 (ウ), (エ)はk=2 (共通す る要素が2) の場合であ る。

未解決 回答数: 0
数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0