学年

教科

質問の種類

数学 高校生

なんで、 f’(0)=0 f’(2)=0 になるのか、 c=0はどうやったら出てくるのか、 a,bの値の求め方も分かりません。

340 基本 例 2133次関数の極値の条件から関数決定 00000 3次関数f(x)=ax+bx+cx+d がx=0 で極大値2をとり, x=2で極小値 6 をとるとき, 定数a, b, c, d の値を求めよ。 [近畿大] 基本 20 指針 f(x) がx=αで極値をとる f'(α) =0 であるが,この逆は成り立たない。 よって、題意が成り立つための必要十分条件は (A) x=0で極大値 2 → f(0)=2, f'(0)=0 x=2で極小値-6f(2)=-6, f'(2) = 0 (B) x=0の前後でf'(x) が正から負に, x=2の前後でf'(x) が負から正に変わる。 を同時に満たすことである。 ここでは,必要条件(A) から, まず a, b, c, d の値を求め, 逆に,これらの値をもと の関数に代入し,増減表から題意の条件を満たす(十分条件)ことを確かめる。 f'(x)=3ax2+2bx+c 基本 例 (1) 関数 囲を (2)関 ただ 指針 解答 x=0で極大値2をとるから f(0)=2, f'(0)=0 x=2で極小値-6をとるから f(2)=-6, f'(2)=0 よって d=2,c=0, (*) 8a+46+2c+d=-6, 12a+4b+c=0 これを解いて a=2,b=-6,c=0,d=2 逆に,このとき f(x)=2x3-6x2+2 f'(x) =0 とすると ①, f'(x)=6x2-12x=6x(x-2) x ... x=0, 2 f'(x) + 0-0 ... 20 関数 ① の増減表は右のよ うになり、条件を満たす。 したがって f(x) 7 極大 2 7 -6 a=2,b=-6,c=0,d=2 必要条件(変数4個で条 件式が4個であるから、 係数は決定する)。 |極小 | ... + 指針_ の方針。 (*)の方程式から求めた 条件では,x=0,2の前 後でf'(x) の符号が変化 するか,つまり、実際に 極値をとるかはわからな い。 実際に増減表を作り、 極値の条件が満たされる ことを確かめる (十分条 件の確認)。 検討 極値をとるxの値 では, 2次方程式3ax2+2bx+c=0の解がx=0, 2である。 したがって, 解と係数の関係 3次関数f(x) の極値をとるxの値は, 2次方程式f'(x)=0の実数解であるから, 上の例題 により 0+2=- 2b 3a' 0.2=L 3a ゆえに b=-3a,c=0 このように, 極値をとるxの値が2つ与えられたときには、 解と係数の関係を利用すると, 文字定数の値や関係式を導くことができる。 練習 3次関数f(x)=ax+bx+cx+dはx=1, x=3 で極値をとる ② 213 極大値は2で, 極小値は? また、その 解答

未解決 回答数: 0
数学 高校生

数IIの微分の範囲です。 x=4/3aまでは分かるのですが、その後の[1][2][3]のところが全くわかりません。M(a)=f(1)とかの操作が何をしてるのかわかりません。 解説よろしくお願いします。

基本例題 213 係数に文字を含む 3次関数の最大・最小 ①①①①① aを正の定数とする。3次関数f(x)=x-2ax2+α'x の 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大 ] 基本 211 重要 214 指針文字係数の関数の最大値であるが,か.329 の基本例題211 と同じ要領で, 極値と区間の端 での関数の値を比べて 最大値を決定する。 f(x) の値の変化を調べると, y=f(x)のグラフは右図のようにな る(原点を通る)。ここで, x=1/3以外にf(x)=f( 3 (これをαとする) があることに注意が必要。 解答 a 3' 合分けを行う。 よって, f'(x)=3x²-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると a α(// <a)が区間 0≦x≦1に含まれるかどうかで場 a>0 であるから, f(x) の増減表 は右のようになる。 x= ここで、x=1/3以外にf(x)=2 f(x)=1/27から ゆえに a 3' x- 3 1</o/ すなわちa>3のとき 3 112] 12/2016/01/314 すなわち2014/12 sisa a 4 2 1-20+ a² x a f'(x) + f(x) 2 x³-2ax² +a²x- 7 ≦a≦3のとき ... [0</1/24 <1 すなわち0<a<2のとき 30</a<1 以上から 4 27 a (x-10/31) 2(x-212/30)=0x401/3であるから したがって、f(x) の 0≦x≦1における最大値 M (a) は a 3 0 |極大 4 27 以外にf(x)=1を満たすxの値を求めると -a³=0 Sw I 注意(*) 曲線 y=f(x) と直線y=d' は, x=- a を満たす a 極小 0 0 0<a<2,3<a のとき M(a)=a²-2a+1 4 M(a) = 27 x= M(a)=f(1) ≦a≦3のとき M(a)=(1/3) M(a)=f(1) -a³ 2 + √( ²3² ) = ²3² (-²3 3 a) ² = 24/7 @² [1] 34 0 で割り切れる。このことを利用して因数分解している。 f(x)=x(x2-2ax+α²) =x(x-a)^ から [2]y 4 2703 YA [3] YA 4 27031 I -a²-2a+1 U 1 a 3 - 10/3 最大 a T T 1 0 I alm 3 1 最大 a 1 a a²2-2a+1 aax [最大] a 1 a 4 0 a 3 a x 4 4 a - 12/12 は、x=1/3の点において接するから、f(x) - 2270'は 27

回答募集中 回答数: 0