学年

教科

質問の種類

数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
数学 高校生

数学の三角関数の問題です。添付の問題の(1)の解説で、x'=rcos(α+3/π)となっている部分が、x'=rcos(3/π-α)のように思えてしまって、なぜカッコの中がα+3/πとなるのかがわかりません。基本的な考え方が身に付いていないのかもしれず、その前提で教えていただ... 続きを読む

246 基本 例題 153点の回転 π 3 点P(3, 1), 点A(1,4) を中心としてだけ回転させた点を Qとする。 (1)点が原点に移るような平行移動により、点Pが点P'に移るとする。 •だけ回転させた点 Q' の座標を求めよ。 /p.2.41 基本事 25 基本事項 12倍 点P'を原点Oを中心として π 3 (2) 点Qの座標を求めよ。 指針 点P(x0,y) を, 原点Oを中心としてのだけ回転させた点を Q(x,y) とする。 y OP=rとし、 動径 OP と x 軸の正の向きとのなす角をαと すると Xorcosa, yo-rina OQで, 径 OQx軸の正の向きとのなす角を考える と、加法定理により x=rcos(a+0)=rcosacos0-rsinasin( Xo Cos O-yosin 0 Q(rcos(a+0). ysin(a +8) P (rcosa, 2 半角 33倍 rina) 0 % 解 12倍 三角 y=rsin(α+0)=rsinacos0+rcosasin 0 た Yo cos 0+ x sin ( sin( この問題では,回転の中心が原点ではないから, 上のことを直接使うわけにはいかな い。 3点P, A, Q を 回転の中心である点が原点に移るように平行移動して考える。 (1)点Aが原点 0 に移るような平行移動により, 点Pは点 解答 P'(2,-3) に移る。次に,点Q′'の座標を (x, y) とする。 また, OP'=rとし, 動径 OP' とx軸の正の向きとのなす 角を とすると 2=rcosa, -3=rsina x軸方向に-1, y軸 方向に-4だけ平行移 動する。 COS また 更 半の 2 練習 ③ 153 よって x=rcos(a+1)= π 3 =r rcosa cos -rsinasin 3 TC rを計算する必要はな 3 √32+3√3 い。 -2018-(-3)2+3 / 2 y=rsin(u+/5) - =rsinacos 3 πC cos/trcosasin y A 3 =3/12/+2.13 2/3-3 したがって, 点 Q' の座標は 2 2+3/3 3√3 2√3-3) 2 (2)Q'は,原点が点 Aに移るような平行移動によって, 点Qに移るから,点Qの座標は (2+3√3+1.2/8-3+1)から(4+3/82/3+5) 1/20 P/ PQ 13 πだけ回転させた点 Qの座標を求めよ。 (2)点P(3,-1), 点A(-1, 2) を中心として 標を求めよ。 TC 3 だけ回転させた点Qの座 p.254 EX93 (2)

未解決 回答数: 1