学年

教科

質問の種類

数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
数学 高校生

数2の質問です! 42の(2)の答えの丸を つけたところでなぜ +1 されるのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

表す。 テーマ 17 (kの多項式) 標準 解答 この数列の第k項は よって、 求める和は 次の数列の初項から第n項までの和を求めよ。 1-3, 2.5, 3-7, 4.9, 考え方を用いて計算する。 そのために, まず, 第項をの式で表す。 1,2,3,4,・第項はん よって、与えられた数列の第k項は 第k項は2k+1 3,5,7,9, k(2k+1) k(2k+1) k(2k+1)=2 k² + k 1 =2. 6 -n(n+1)(2n+1)+ )+1/2(n+1) -1/13n(n+1){2(2n+1)+3) n(n+1) でくくる。 =1n(n+1)(An+5) □ 練習 41 [(1) 32, 62, 92, 122 次の数列の初項から第n項までの和を求めよ。 -3 (2) 1-2, 4-4, 7-6, 10.8, テーマ 18 2 (第k項が和の形) 2k 応用 次の数列の初項から第n項までの和を求めよ。 1+2, 1+2+4, 1+2+4+8, 考え方 まず、第k項をkの式で表す。 第1章 数列 112- 基本と演習テーマ 数学B 40(1) 23.74-1=37-11/12(71) (2)24-24-4-1=44^2=4(4-1) (3) (-2)-1-(1-(-2)-1) (= (1-(-2)-1) 41 (1) この数列の第項は よって、 求める和は 9k²-9k² (3k)29k2 =9. 6"(n+1X2n+1) 3 よって、 求める和は (3-1)-(3-21) 9(3" 23-1 (9-3-9)- -(3-+-2-9) 43 与えられた数列を (al その階差数列を する。 la a a a3 a as a a 10m) by ba ba ba bs be =ln(n+1)(2n+1) (2)この数列の第項は (3k-2)-2k=6k²-4k よって, 求める和は (6k2-4k)-62-41 k 4-1 A-1 =6 6.1m(n+1)2m+1)-4.12m(n+1) =n(n+1)(2n+1)-2n(n+1) =n(n+1){(2n+1)-2) =n(n+1)(2n-1) 42 (1) この数列の第項は 2+4+6++2k =2(1+2+3+ ...... +k) =2. kk +1)=kk+1 (1) 数列 (b) は 1,4,7, 10, これは公差が3の等差数列であるから bs=10+3=13, b=13+3= よって a6=as+bs=23+13=3E a=a6+bg=36+16=5 (2) 数列 (b)は 1, 2, 4, 8, .... これは公比が2の等比数列である bg=8.216. be 16-2=3 46=as+bs=19+16= よって α7=46+66=35+32= 44 数列 (b)は 3, 6, 12, 24, これは初項が73, 公比が 「2の等 から b="3.2"-1 第k項は 1+2+2+......+2k ←初項が 1. 公比が2の等比数列の和 解答 この数列の第k項は よって, 求める和は 1 (2k+1-1) 1+2+2+・+2= -=2k+1-1 2-1 ←項数はん+1 A-1 よって, 求める和は (2 +1-1) = 2 21-1 したがって、 kk+1)=k²+ k²+k k=1 =ln(n+1)(2n+1)+1n(n+1) k=1 k=1 1 n(n+1)(2n+1) +3) 4(2-1) 2-1 -n=2"+2-n-4 =1n(n+1)2n+4)、 6' 練習 42 次の数列の初項から第n項までの和を求めよ。 (1) 2,2+4, 2+4+6, 2+4+6+8, 12 1+3, 1+3+9, 1+3+9+27, ...... n(n+1)(n+2) (2)この数列の第項は 1 +3 +32 + +3k 1.(311) 3-1 よって, n≧2のとき a=a+3-24-1=1+ =1 すなわち a=3-2"-1-2 初項は =1であるから、この にも成り立つ。 したがって、 一般項は an 45 (1) この数列の階差数列は 1, 5, 9, 13, ...... これは初項が1, 公差が4 ら,その一般項を6mとす b=1+(n = (3+1) すなわち b=4n-3

未解決 回答数: 1
数学 高校生

確率の問題の質問です。(2)のP(0)に関してです。 P(0)は、「自分が持ってきたプレゼントを受け取る人数が0人」という事ですよね。A B C Dの各々が持ってきたプレゼントは誰にも配られないという事ですよね? そうなるとP(0)の答えは存在しなくないですか? 回答よろ... 続きを読む

基本 例題 45 和事象・余事象の確率 00000 (2) 自分が持ってきたプレゼントを受け取る人数がん人である確率を P(k) と これらのプレゼントを一度集めてから無作為に分配することにする。 あるパーティーに, A, B, C, Dの4人が1個ずつプレゼントを持って集まった。 (1)AまたはBが自分のプレゼントを受け取る確率を求めよ。 する。P(0), P (1) P(2), P(3), P (4) をそれぞれ求めよ。 基本 43 44 指針 (1) A, B が自分のプレゼントを受け取るという事象をそれぞれA,Bとして 和事象の確率 P(AUB)=P(A)+P(B)-P(A∩B) 解答 を利用する。 (2) P(0) が一番求めにくいので,まず,P(1)~P(4) を求める。そして,最後に P(0) をP(0)+P(1)+P(2)+P(3)+P(4)=1 (確率の総和は1)を利用して求める。 (1) プレゼントの受け取り方の総数は 4! 通り A,Bが自分のプレゼントを受け取るという事象をそれ ぞれA, B とすると, 求める確率は P(AUB)=P(A)+P(B)-P(A∩B) 3! 3! 2! 6 6 2 + + 4個のプレゼントを1列 に並べて, Aから順に受 け取ると考える。 〒441-4! 2424=2Aの場合の数は,並び 24 12 (2) P(4),P(3), P(2), P (1) P(0) の順に求める。(A) [1] k=4 のとき, 全員が自分のプレゼントを受け取る から1通り。 よって 1 = 1 P(4)=- 424 4! 24 [2] k=3となることは起こらないからP (3) =0 [3] k=2のとき,例えばAとBが自分のプレゼント) を受け取るとすると, C, D はそれぞれD, Cのプレ ゼントを受け取ることになるから通り □□□の3つの に, B, C, D のプレゼン トを並べる方法で3!通 3人が自分のプレゼン を受け取るなら、残り 人も必ず自分のプレゼ トを受け取る。 自分のプレゼントを受 よって P2)=4C2X1_11) 4! 4 [4] k=1のとき, 例えばA が自分のプレゼントを受け 取るとすると, B, C,D はそれぞれ順に C D B ま たは D,B,Cのプレゼントを受け取る2通りがある 検討 取る2人の選び方は 通り。 から P(1)= 4C1X2_1 AC (A) = 4! 3 L [1]~[4] から P(0)=1-{P(1)+P(2)+P(3)+P(4)} k=0のときは4人の 完全順列 (p.354) の数 =1-11/3 あるから 1 1 + + 4 24 8 3 = よって P(0)=1 P(0)==

未解決 回答数: 1