学年

教科

質問の種類

数学 高校生

例題13を用いて119番をやるのですが答えを見てもわかりません

第2章 集合と命題 113 n は自然数とする。 次の命題の裏を述べよ。 p.76 (1) 四角形 ABCDが長方形ならば, 四角形 ABCD は平行四辺形である、 (2) n2 が奇数⇒nが奇数 *114 n は整数, a, b は実数とする。 次の命題を証明せよ。 (1) n2+1が奇数ならば, nは偶数である。 (2)2a+360 ならばα > 0 または6>0である。 p.77 *115が無理数であることを用いて、次の数が無理数であることを証明せよ (1) 2-√√2 B問題 116 背理法を利用して,次のことを証明せよ。ただし,a>0 とする。 (1) αが無理数ならば, α は無理数である。 (2)が無理数ならば √3-√2 は無理数である。 *117 (1) n は整数とする。 次の命題を証明せよ。 ☑ n2が3の倍数ならば, nは3の倍数である。 p. 78 9 (2)背理法を利用して,3が無理数であることを証明せよ。教p.79 例題 無理数と有理数 a,bは有理数とする。 3 が無理数であることを用いて,次の命題 13 を証明せよ。 第2章 集合と命題 39 118 a, b は有理数とする。 6 が無理数であることを用いて,次の命題を証明 ☑ せよ。 √2+√36=0a=b=0 *119 次の等式を満たす有理数 g の値を 例題13の結果を用いて求めよ。 (1)(3+√3)-(2-√3) g+1-4v3=0 (2) √3-1+3=1 発展〉 「すべて」 と 「ある」 の否定 命題とその否定 命題とその否定について, 次のことが成り立つ。 pはxに関する条件とする。 命題「すべてのxについて」の否定は「あるxについて 命題「ある x につい否定 「すべてのxについて 問題 ある CONNECT 6 「すべて」 と 「ある」 の否定 次の命題の否定を述べ, もとの命題とその否定の真偽を調べよ。 (1) すべての素数nについて, n は奇数である。 (2) ある実数xについて x2≦0 a+b√3=0a=b=0 この命題は直接証明することが難しい。 よって、背理法を利用して証明する。 まず, b=0 と仮定する。 b よって 解答 6≠0 と仮定すると √3=- a b a は有理数であるから,この等式は、が無理数であることに矛盾する。 b=0 b=0のとき a030から a=0 したがって, 命題は真である。 【?】 a+bv3=0を 考え方 「すべて」 と 「ある」 を入れ替えて結論を否定する。 命題とその否定では,真 偽が逆になる。 解答 (1) 否定は 「ある素数nについて, n は偶数である。」 2は素数であり, かつ偶数であるから,否定は真である。 否定が真であるから,もとの命題は偽である。 (2)否定は 「すべての実数xについてx>0」 x=0のときx2=0 となるから, 否定は偽である。 否定が偽であるから,もとの命題は真である。 120 次の命題の否定を述べもとの命題とその否定の真偽を調べよ。

未解決 回答数: 1
数学 高校生

⑶にて x=-1では不連続にならないのですか? 確かにlim[x→-1+0]f(x)=f(-1)は成り立ってますけど、 その負側ではすぐに途切れているので不連続だと思いました。

基本(例題 56 関数の連続 不連続について調べる -1≦x2 とする。 次の関数の連続性について調べよ。 (1) f(x)=x|x| (2)g(x)=-1 (x-1)2 (3)h(x)= [x] ただし,[]はガウス記号。 (x+1), g(1)=0 P.97 基本事項 重要 57, 58、 指針 関数 f(x)がx=αで連続limf(x)=f(a)が成り立つ。 また, f(x) がx=αで不連続とは [1] 極限値 limf(x) が存在しない XIA [2] 極限値 limf(x) が存在するが limf(x)=f(a) XIA のいずれかが成り立つこと。 解答 x-a 関数のグラフをかくと考えやすい。 099 2章 関数の連続性 (1) x>0 のとき f(x)=x2 x<0 のとき f(x)=-x2(1),(2)多項式で表された よって limf(x)=limx2=0, x+0 x+0 limf(x) = lim(-x2)=0 x-0 x→0 0 また f(0)=0 ゆえに limf(x)=f(0) よって, x=0で連続であり -1≦x≦2で連続。 (2) limg(x)=lim =8 x→1 x-1 (x-1)² 極限値 limg(x) は存在しないから 関数は連続関数であるこ とと p.97 基本事項 1 ③ に注意。 関数の式が変わ る点 [(1) ではx=0, (2) ではx=1] における連 続性を調べる。 なお (3) では区間の端点での連続 性も調べる。 x→1 -1≦x<1,1<x≦2で連続; x=1で不連続。 (3) -1≦x< 0 のときん(x)=-1, 0≦x<1のとき h(x)=0, [x] は x を超えない最大 の整数。 1≦x<2のとき h(x)=1, h(2)=2 よって limh(x)=-1, limh(x) = 0 ゆえに, 極限値limh(x)は存在しない。 x-0 x+0 x→0 limh(x)=0, limh(x)=1 ゆえに, 極限値 limh(x) は存在しない x→1-0 x→1+0 limh(x)=1, h(2)=2 X-2-0 x→1 ゆえに lim h(x)+h(2) x2-0 よって -1≦x< 0, 0<x<1, 1 <x<2で連続 ; x = 0, 1, 2で不連続。 (1) f(x)* 4 (2) g(x) 14 0 2 x -1 0 1 1 2 X (3) h(x) 入らない 2 1 fm?= f(-1) 12 -1 スー1+0 0 1 2 -1

未解決 回答数: 1