学年

教科

質問の種類

数学 高校生

大門1わかりません

の数 る。 また、 n (P) は ∩B) =n(A)+n(B) ■は全体集合 I p.68 69 も参照。 方法 すべて求める。 目の要素がαの集 書き上げ、続いて、 ■の要素がもの集合、 ■合の順に書き上 によい。 りあり, Bの 方がる通り して求めよ。 © 2 集合の要素の個数の計算 全体集合を U = {1, 2, 3, 4, 5, 6,7} とする。 ひの部分集合 (1,3,5,6,7}, B={2, 3, 6,7} について, n (A), n(B), n (A) を求めよ。 Bが全体集合 Uの部分集合でn(U)=50, n (A)=30, (AUB), 集合A, (イ) ANB (ウ) AUB (エ) AnB n(B)=15, n(A∩B)=10 であるとき、 次の集合の要素の個数を求めよ。 CHART & SOLUTION 集合の要素の個数の問題 図をかいて ① 順に求める EN n(A)=n(U) -n (A) を利用する。 ② 方程式を作る 国の方針により, 求めやすいものから順に, 個数定理を用いて集合の要素の個数を求め n (AUB) =n(A)+n(B)-n (A∩B) を利用する。 ②は基本例題3を参照。 入ってないやつ (1) n(A)=5, n(B)=4 AUB={1,2,3,5,6,7} である からn(AUB)=6 = {24} であるからn(A)=2 n(A)=n(U)-n(A) (2) (7) (1) 10 (2) n =50-30=20(個) n(ANB)=n(U)-n(ANB) =50-10=40 (個) (AUB)=n(A)+n(B) - n(ANB) =30+15-10=35 (個) In(ANB)=n(AUB) =n(U) -n (AUB) -40% =50-35=15 (1) ・U 4 A 5 -U(50) A (30) 3 6 7 ANB (10) B OL 00000 2 B (15) p.264 基本事項 1 Js 265 1歳 1 ←左の図のような, 集合の 関係を表す図をベン図 という。 個数定理を利用。 集合の要素の個数 場合の数 ←補集合の要素の個数。 (A∩B)=15 であるとき、 次の集合の要素の個数を求めよ。 (ア) A (イ) ANB(ウ) AUB ド・モルガンの法則 A∩B=AUB (ウ)の結果を利用。 PRACTICE 10 (1) 上の例題 (1) の集合 U, A, B について, n(U), n(B), n(A∩B), n (AUB) を 求めよ。 (②2) 集合 A,Bが全体集合 Uの部分集合でn(U)=80, n(A)=25, n(B)=40, (エ) ANB

未解決 回答数: 1
数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0
数学 高校生

エとオが分かりません 答えはエが0でオが1です。

33 SELECT SELECT 90 60 太郎さんと花子さんは,次の宿題について考えている。2人の会話を読んで,下の問いに答えよ。 ア 宿題 NG 全体集合を U, 集合 A,BをUの部分集合とし、集合Sの要素の個数を n (S), 空集合をΦで表す。 n(U)=100, n(A)=50, n(B)=30であり, A∩B≠Φ, AnB≠中であるとき, n (AUB)のとり 得る値の最小値と最大値をそれぞれ求めよ。 ア 太郎 : A∩B=中を表す図は ア で、A∩B=Φ を表す図は 花子:A∩B キΦは集合 A∩B に ウ の要素が属することを, A∩B≠は集合 A∩B に ウ の要素が属することを表しているね。 ア ウ 9 O A. B. 3X3 イ 難易度 ウ エ | の解答群 ⑩ 少なくとも一つ ① ちょうど一つ 目標解答時間 B. Oo 9分 に当てはまる最も適当なものを、次の各解答群のうちから一つずつ選べ。 ただし, は同じものを繰り返し選んでもよい。 の解答群 オ を繰り返し選んでもよい。 また, 0 n(ANB) ① n (A∩B) ② Bのすべて イ |だね。 ③ 太郎: n (AUB) が最小値をとるときは, オ | が最小値をとるね。 花子:そうだね。宿題について, n (AUB) の最小値はカキで, n(AUB) の最大値はクケだね。 I | が最小値をとるね。 n (AUB) が最大値をとるとき に当てはまるものを、次の⑩ ① のうちから一つずつ選べ。ただし、同じもの クケに当てはまる数を求めよ。 カキ ( 配点 10 ) 【公式・解法集 35 x 確率 場合の数と 2

回答募集中 回答数: 0
数学 高校生

114.3 1からpのk乗までの自然数のうち、 pの倍数の個数がpのk乗÷pで求まるのはなぜですか??

482 A 00000 互いに素である自然数の個数 例題 ( 114) [類名古屋大 nを自然数とするとき, m≦n で, mとnが互いに素であるような自然数mの 重要 個数をf(n) とする。 また, p, g は素数とする。 (1) f (15) の値を求めよ。 (3) 自然数に対し, f(p) を求めよ。 指針 (1) 15 と互いに素である 15 以下の自然数の個数を求めればよい。 15=3・5であるから 15 と互いに素である自然数は, 3の倍数でも5の倍数でもない自然数である。 しかし、 「でない」 の個数を求めるのは一般に面倒なので, 全体 (である)の方針で考える。 (2) は異なる素数であるから, bg と互いに素である自然数は, pの倍数でもgの倍 TRAND 数でもない自然数である。 (1) と同様, 全体 (である)の方針で考える。 (3) と互いに素である自然数は,かの倍数でない自然数である。 解答 (1) 15=3.5 であるから, f(15) は1から15までの自然数のう ち, 1-3, 2-3, 3.3, 4.3, 1.5, 2.5, 3.5 を除いたものの個数であるから f(15)=15-7=8 (2) p, g は異なる素数であるから, pg と互いに素である自然 数は,pの倍数でもgの倍数でもない自然数である。 ゆえに, f(pg) は, 1 から by までのby 個の自然数のうち D p,2p,......, (q-1) p, paig, 2g, , (p-1)q, pq を除いたものの個数である。 よって f(pg) = pg-(p+α-1) = pg-p-g+1 (2) gf (pg) を求めよ。 FRO =(p-1) (q-1) (3) 1からp までの個の自然数のう の倍数はppp1(個)ある から、f(p) はかの倍数でないものの個数を求めて f(p)=p²-pk-1 ISMAI ①pは素数, kは自然数のとき ② p q は異なる素数のとき ②' p q は互いに素のとき pの倍数 (9個) 練習 (3) ③ 114 (1) f(77) の値を求めよ。 gの倍数 (個) 1~pq pg(1個) bigと 互いに素 基本112,113) 15 程度であれば,左の解答 でも対応できるが,数が大 きい場合には,第1章の基 本例題1で学習した, 集合 の要素の個数を求める要領 で考える。 検討 オイラー関数(n) CADRE n は自然数とする。1からnまでの自然数で, n と互いに素であるものの個数をΦ(n) と表す。 このΦ(n) をオイラー関数といい, 次の性質があることが知られている。 $(p)=p-1, (p²)=p²-pk-1 (pa)=(p)o(q) 上の重要例題 114 の f (n) について,次の問いに答えよ。 <pg が重複していることに 注意。 はギリシア文字で「ファイ」と読む。 [(1) で確認] p=3,g=5 とするとf(15)=f(3.5) =(3-1)(5-1)=2.4=8 (pa)=(p)o(q)=(p-1)(q-1) (1-1/2)としてもよい。 (2) f (pg) = 24 となる2つの素数p, g (p<g) の組をすべて求めよ。 (3) f(3) = 54 となる自然数kを求めよ。 [類 早稲田大〕 1 STT p.484 EX80 基本 2 (2) CHA 解 (I) 20 素因 1か 1

未解決 回答数: 0