学年

教科

質問の種類

数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0
数学 高校生

106.2 記述これでも大丈夫ですか??

472 基本 例題 106 約数の個数と総和 31/ 00000 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数n を求めよ。 [(2) 慶応大] (3) 56の倍数で, 正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pagere…..... となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EO (1+p+p²+…+pª)(1+g+q²+…+q¹)(1+r+r²+…+r²)....... 【CHART 約数の個数, 総和 素因数分解した式を利用 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2.gº.y....... (a≧1,6≧0,c≧0, … ; g, , ... は奇数の素数) 1+ の部分がない。 と表され, その総和は (2+22+..+2°) (1+g+q²+ +q°)(1+r+y^+..+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数15を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 15・1, 53 であるから, nは15-11-1 または'-'g3-1の形。 p.468 基本事項 ④4 ←P, 4, Y, ··· は素数。 解答 (1) 360=232.5であるから, 正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24 (個) また,正の約数のうち偶数であるものの総和は pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,g,r は素数) の形で表される。 nは56の倍数であり, 56=23・7であるから, nはP2 の形 で表される。したがって, 求める自然数nは n=24.72=784 < 素数のうち, 偶数は2の みである。 (2+2+2)(1+3+3)(1+5)=14・13・6=1092 (2) 12"=(2・3)" = 22" 3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a" であるための条件は (2n+1)(n+1)=28 よって 2n²+3n-27=0 ゆえに (n-3) (2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15.1=5・3) であるから, nは または pq2 (p, g は異なる素数) 積の法則を利用しても求め られる (p.309 参照)。 m のところを 2nn とし たら誤り。 15・1から 15-101-1 5・3 から 3-1 の場合は起こらない。 <p=2, q=7

回答募集中 回答数: 0
数学 高校生

106.3 記述これでもいいですか?

472 基本例題106 約数の個数と総和 (①) 360 (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 p.468 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pare…・・・・・ となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... EO (1+p+p²+...+pª)(1+g+q²+···+q°)(1+r+r²+··+²) ******** (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2°•g.xc...... (a≧1,b≧0,c≧0, ...;g,r, ··· は奇数の素数 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 と表され, その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rº)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 151 53 であるから, nは15-11-1 または5-13-1 の形。 解答 (1) 360=2.32.5であるから,正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は 00000 ←p,g,r, ….. は素数。 14 pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,q,r は素数 積の法則を利用しても求め られる (p.309 参照)。 (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22-3)"=22"• 3" であるから, 12" の正の約数が28個(ab)"=a"b", (q""="" であるための条件は (2n+1)(n+1)=28 このところを2mmとし 偶数は201 みである。 よって 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・1=5・3) であるから,nは か pg²(p, g は異なる素数) または の形で表される。 nは56の倍数であり, 56=2.7であるから, nは²の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24.72=784 たら誤り。 <p=2,g=7 15-1515-11-1 5・3から D-13-1 (1) 756 の正の約数の個数と、正の約数のうち奇数であるものの総和を認めた 練習 2 106 (2) 正の約数の個数が3で,正の約数の総和が57 となる自然数nを求めよ。 (3) 300 以下の自然数のうち,正の約数が9個である数の個数を求めよ。 CP. 484 EXTO 指針 n CH 解 √n²+ 平方し m, n 40の糸 また、 解は順 したが 検討 上の 1つ 答え ま の自 は, 例え が決 ある とい ため、 しか る。 一致 10 練習 107

回答募集中 回答数: 0
数学 高校生

OOn+1 の求め方教えてください なぜ2rn+1なのか分かりません 普通に計算したらrnになったのですが、、、 右上ら辺に計算かいてます!!

164 基本例題 102 無限等比級数の応用 (2) ∠XOY [=60°] の2辺OX, OY に接する半径1の 円の中心をOとする。 線分00 円 01との交点 を中心とし, 2辺 OX, OY に接する円を 0 とする。 *****, On, 以下、同じようにして、 順に円O3, を作る。 このとき,円O1,02, を求めよ。 ・の面積の総和 CHART OLUTION 図形と極限 ...... n番目と (n+1) 番目の関係を調べて漸化式を作る ・・・・・・ 解答 円Oの半径,面積を,それぞれrn, Sn とする。 円0mは2辺OX, OY に接し ているので, 円 0 の中心0 は,2辺 OX, OY から等距離にある。 よって, 点0 は ∠XOY の二等分線上 にある。 ゆえに, O . X00=60°÷2=30°であるから 00n=2rn これと OnOn+1=00n-00n+1 から rn=2rn-2rn+) 円O, On+1の半径をそれぞれrn, Yn+1 として, In と rn+1 の関係式を導く。 直角 三角形に注目するとよい。 Yn+1= ゆえに また \n-1 よって = (1/2) したがって 2 -rn π > 4 21+1. 3 TC n=1 305 Y n+1 n+1 10100000 X ブル ① H 8 その面積の総和 ΣSn は,初項 π,公比 n=1 ゆえに, 円 01, O2, の無限等比級数である。公比 + <1 であるから,和は収 4 束し, その和は X n-1 Sn=πr²=π ² = π ( 1 ) ²₁ - ² 60° ・X |基本101 00nti = 00n-Ontin = 2mm-₂² apa ◆円O ²² と OX との接点 をHとすると, △OTOH は3辺が 21:√3の 比の直角三角形。 これ に着目して 1 と の関係を調べる。 30° 60°1

回答募集中 回答数: 0
数学 高校生

なぜS1とS2で分けるのですか?

60 第8章 数列 [Check] 例題 257 既約分数の和 考え方 pは素数,m,n は正の整数でm<nとする.m を分母とする既約分数の総和を求めよ. 具体的な数で考えてみる.たとえば,2と4の間 (2以上4以下)にあって,5を分 母とする数は, Flocus 10 (-2), 11, 12, 13, 14, 15 (-3), 16, 17, 1 5 5 5 つまり, 2, 2+1/13, 2+1/23 2+10 となり,初項2 公差 1/3の等差数列にな m以上n以下で』を分母とする数は、考え方を見る。 mp (=m), mp+1_mp+2 p か Þ' つまり,初項m, 公差 1/3の等差数列となる。 項数np-mp +1, 末項nであるから, その和 S は, +02= っている. 項数は分子に着目して 11 (=20-10+1) 個である. これらの和を求めて、そのうち既約分数にならないもの(整数) を引くとよい。 ...... 整数の また、このうち, 既約分数でない数は, m,m+1,m+2, n-1, n *** mとnの間にあって、 (同志社大) S=1/12 (np-mp+1)(m+n) ……① S₁2 S2=1/12 (n-m+1)(m+n).....② == =- 1 公差の等差数列 か 項数をkとすると n=m+(k-1)} *), k= (n-m)p+1 だから, S₁={(n-m)p+1} つまり,初項m, 公差1の等差数列であり、 Sx(m+n) 項数n-m+1,末項nであるから, その2は,としてもよい . 分母が素数であるから, np-1 np ²(=n) p' p =1/12 (m+n)(n-m)(p-1) 5' 5' 5'5'5 よって 求める和Sは, ①, ② より CRE 201 S=1/12 (np-mp+1)(m+n)-1/12(n-m+1)(m+n) (m+n)(np-mp+1-n+m-1) 18 19 20 (4) 具体的な数で調べて規則性をみつける 注素数を分母とする真分数の和は 0>80+n8 (1-x)+08-SIA- まずはすべての分数の 和を求める. S=1/(数) x (初項+末項) 既約分数でないものは からnまでの整数に なる. 項数n-(m-1) S1 から S2 を引けば, 既約分数のみの和とな る. S=S-S2

回答募集中 回答数: 0