学年

教科

質問の種類

数学 高校生

(3)を解いてみましたが、答えが違いました。どこで間違えたのでしょうか。 また、(-2/3)^(n-1)の場合、マイナスは偶数乗か奇数乗かが固定されていないと、括弧の外に出せないという考え方であっていますか?

10 和と一般項の関係, 3 項間漸化式 - 数列{an}が, a=-1,22ar=3an+1-24-1 (n=1, 2, 3, ...)を満たすとき, (1) az を求めよ. (2) 3an+2-70n+1+20m=0を示せ. (3) am を求めよ. an=S-S1 (山形大工/一部省略) S” を含む漸化式は, 「an=S-S-1 (n≧2)」......☆を用いて, S を消去し,4 だけの漸化式に直す. ☆は一般にはn≧2のときのみに通用することに注意 (n=1 とするとn-1=0 になってしまう!). n=1のときは, α = S」 を用いる。 an+2+pan+1+gan=0 an+2+pan+1+ga=0の一般項を求めるには,r' + pr+g=0の解α,βを 用いる. 解と係数の関係より, か=-(a+β), q=aB. よって, an+2-(a+β)an+1+αBa=0. これを an+2-αan+1=B(an+1-αan), an+2-Ban+1=α (an+1-Ba) と変形する. α=βのときは,an+2-αan+1=α (an+1-αan)より, an+1-4a=an-1 (a2-aa)として, an+1=αan+san-1 (s=az-aa1). これをα+1で割り, bn=alα" とおくと {bm} は等差数列になる. 解答 Sn=ax とおくと,2S=3an+1-24-1 (1) ① n=1 とすると, 2S1=3a2-241-1 S=q=-1だから, -2=3a2+2-1 ∴. a2=-1 (2) ①のnをn +1 にすると, 2Sn+1=3an+2-2an+1-1 ②-①より, 20+1=34n+2-34n+1-2an+1 +2an :.34n+2-7an+1+2an=0 (3) (2)より, an+2 7 2 13an+1+1/30m=0 [右の傍注に注意し] ③を変形して 1 an+2-24n+1=1/22 (an+1-2an) ④, an+2 (ant1-20),ant2-1/30nt1-2 (0mts-1230円) \1 1\n-1 an+1- ←S+1-Sn=an+1 7 ③ rr+ x+2=0の解 --- 3 (2) (11/23)により ....5 1 x=2. 3 ⑥④より{an+1-2cm} は公比 1/3 の 等比数列. 2-1 ...... 7 a-(—)" (az−2a1) = ( )" (−1+2)=(3)- =(1/1) 3 ④より, an+1-2an= ⑤より, an+1一 an=2n-1 a2 12-130-20-(02/24)-20-1(-1+1/3)-(-/3/3) 2 =2" よって, 3 n-1 ・2"-1- 10 演習題 (解答は p.76) 2Sn2 数列{a} は,q=1, an= (n=2, 3, 4, ...) を満たす. 2Sn+1 ただし, Sn=a+az+... +an である. (1)a2 を求めよ. (2) SS-1 を用いて表せ. (3) S (2) 前文に反しか らを消去する. C (芝浦工大) (3) 11を参照。

回答募集中 回答数: 0
数学 高校生

3番の式の作り方わかんないです

基礎問 232 第8章 ベクトル 148 角の2等分ベクトルの扱い(II) AB=5, BC=7, CA =3 をみたす △ABCについて,次の問い に答えよ. (1) ∠Aの2等分線と辺BC の交点をDとするとき,ADをAB. AC で表せ. (2) ∠Bの2等分線と線分ADの交点をⅠとするとき, AI: ID を求めよ. (3) AI を AB, ACで表せ. (4) 始点を0とし, I を OA, OB, OC で表せ. (3) (4) 8.3AB+5AC Ai-15 AD=15 15 85AC-3AB+5AC Ai=oi-OA,AB=OB-OA, AC-OC-OA 15AI=3AB+5AC にこれらを代入して . 15(OI-OA) = 3 (OB-OA)+5(OC-OA) Oi= 70A +30B+50℃ 15 始点を変える公式) AB=□B-□A (□は新しい始点) 参考 233 PL (3)の式を利用する (4)の結論を見ると, OA, OB, OC の係数が、3辺の長さにな 相手は っています. これは偶然ではなく, 一般に, 次の式が成りた つことが知られています. (マーク式では有効な知識です) 右図のような △ABCにおいて, 内心とすると C b 01=40A+6OB+coc B' a. IC a+b+c 精講 (1) 角の2等分ベクトルの扱い方の2つ目です. 右図のとき 次の性質を利用します。 AB: AC=BD:DC (I・A53 三角形の内角の2等分線は1点で交わり,その点は, 内心と呼ばれます. (IA52 0 BD C 証明は演習問題 148です. 誘導にしたがってがんばってみましょう。 これは「始点を変えよ」 ということですが,この結果が問題なのです. ゥ このようにきれいな関係式がでてきます。 たまには, 数学の美しさを鑑賞す

回答募集中 回答数: 0
数学 高校生

この線部の式の意味がよくわからないので教えてください🙇‍♀️ 蝶々型の面積比の問題です。

216 総合演習問題 §7 図形の性質 ( 7 (12分20点) 〔1〕 太郎さんのクラスでは,数学の授業で次の問題が宿題として出された。 6円 ABの 4 形は 問題 △ABCにおいて, AB = 4, BC=2, CA =3とする。 辺 AB を 1:3 に内分する点を D, △ABCの内心をIとして, 直線 AI と辺BC の交 点をE, 直線DIと辺BCの交点をFとする。 このとき, Iは線分 DF をどのような比に分けるか。 (1) 内心についての記述として,次の①~③のうち、正しいものはア である。 ア |の解答群 ⑩ 三角形の3本の中線は1点で交わり, この点が内心である。 ① 三角形の三つの内角の二等分線は1点で交わり, この点が内心である。 三角形の3辺の垂直二等分線は1点で交わり, この点が内心である。 三角形の3頂点から対辺またはその延長に下ろした垂線は1点で交わ り,この点が内心である。 (2) 太郎さんは宿題について考え, 次のように解答した。 イ AI I 点Iは内心であるから, BE= であり, である。こ ウ EI オ のとき, BF 「カキ] EF FI ケ であるから, である。 DI ク コサ よって, 点Iは線分 DF を コサ: ケ の比に内分する。 (3)△ADIと△EFIの面積比は AEFI 「シス] = AADI センタ である。 (次ページに続く。) 3)

回答募集中 回答数: 0
数学 高校生

2番の式が全体的に良くわかんないんですけど教えてくださいませんか?

第4 58 直線の傾きと (1) 軸の正方向と 75° をなす直線の傾きを求めよ. (2) 2直線y=0 (z軸) と y=2.x のなす角を2等分する直線の 精講 うち,第1象限を通るものを求めよ. (1)直線の傾きと,直線がx軸の正方向となす角の間には m=tan0 の関係があります。とても大切な関係式ですが、相 はこれだけでは答えがでてきません. それは tan75° の値を知ら ないからです.しかし, sin 75° や cos 75° ならば, 75° = 45° + 30°と考えれば 54の加法定理が使えます. だから,ここでは tangent の加法定理(ポイント を利用します. (2) 求める直線を y=mx, m=tan とおいて, 図をかくと, tan20=2 をみ たす m(または tanf) を求めればよいことがわかります。このとき、2倍 公式 (ポイント)が必要です. 解答 (1) 求める傾きは tan 75° tan 75°= tan 45° + tan 30° 1-tan 45°tan 30° 1 + tan 30° tan (a+β) tan +tanβ 1-tana tanẞ 1-tan 30° 1-1x59 =45°~B=30 1+ を代入 √3 √3+1 1 -=2+√3 1-- √3-1 √3 注 75°=120°-45°と考えることもできます。 (2)求める直線 y=mx, この直線がx軸の正方 向となす角を0とすると y y=2x =mx ゆえに, m=1-m² ∴.m²+m-1=0 m0 だから =1+√5 m=- 2 √5-1 よって, y= IC 2 (別解) A(1,0),B(1,m), C(1,2) とおくと, y=mxは∠AOCを2等分するので OA: OC=AB BC が成りたつ. .. 1:√5=m:(2-m) よって, m=- ポイント 2 √5-1 2 √5+1 <加法定理> 95 AE 03 第1象限を通るから I A53 (√5+1)=2「角の2等分線の 性質」 tana±tanẞ ・tan (α±β)= < 2倍角の公式> tan 20= 1 + tantan B (複号同順) 2 tan 0 1-tan20 <半角の公式> tan2 1-cos 2 1+cos 0 これらの公式はすべて, tan = Sing の関係と, sin, cos の加法定理、 COS O 2倍角の公式から導かれます. =2 B 演習問題 58 A (0<e<. m>0) tan20=2 2 tan 0 1-tan20 直線 y=x と y=2.x のなす角を2等分する直線y=mz (m> 0) を求めよ.

回答募集中 回答数: 0
数学 高校生

(2)を解き、答えもあっていましたが、私の答案の書き方で直した方がいいところを教えてください。

4 サイコロ型・ (1) 2個のさいころを同時に投げるとき, (i) 目の数の差が2である確率はいくらか. (ii) 目の数の積が12である確率はいくらか. (2)3個のさいころを同時に投げるとき,あるさいころの目の数が残りの2つのさいころの目の 数の和に等しい確率はいくらか. ( 椙山女学園大) 1 2 3 4 5 6 O O O さいころは区別する 目はさいころ1つにつき6個あるから, 2個投げ た場合,目の出方は36(=62) 通りあってこれらは同様に確からしいさい ころ2個であれば右のような表を書いて条件を満たすところに印をつける (図は目の数の和が6の場合で確率は5/36) という解法も実戦的と言える. さて,右表で「1と2の目が出る」 は2か所にあるが,これは 「区別できる さいころに1と2の目を割り当てるとき, 割り当て方は2通りある」 という 5 O ことである. ゾロ目は割り当て方が1通りなので表でも1か所ずつである. 6 12345 10 まず目の組合せを調べる さいころが3個以上のときは,表を書いて解くのは大変である. 上で述 べたように,まず目の組合せを調べ, 次にどの目をどのさいころに割り当てるかを考える. ③ (a,b,c)の関係性の国立 (サイコロ) 解答 ①サイコロ ②出に目一列に並べる→口 サイプわりわてるふり (1) 2個のさいころを区別し, A, B とすると, 目の出方は62=36通りあり, 表を使って解いてもよい。 これらは同様に確からしい. (i) 目の組合せは {3, 1}, {4, 2}, {5, 3}, {6, 4}の4通りで,どちらがAでAが3, Bが1とAが1. Bが あるかで各2通り。 よって出方は4×2=8通り. 求める確率は 8 2 36 9 など2つの目が異なるので割り 当て方は2通りずつ(Ⅱ)も同 様 (17 (i) 目の組合せは {2,6}, {3,4} だから, (i) と同様に目の出方は 4 1 2×2=4通り. よって確率は = 36 9 (2) さいころを区別すると, 目の出方は 63=216通りある. ←同様に確からしい. 3つの目を a, b, c として, a=b+c を満たす(a,b,c) [ただしbsc] を調 ここは3つの目の組合せ. べると, (2, 1, 1), (3, 1, 2), (4, 1, 3), (4, 2, 2), wwwwwwww wwwwwww (5, 1, 4), (5, 2, 3), (6, 1, 5), (6, 2, 4), (6, 3, 3) wwwwww ←αが小さい順, αが同じならが 小さい順. 目の割り当て方は,が各3通り,それ以外は各3!=6通りあるから,216 ~ は,異なる目をどのさいこ 通りのうち、条件を満たすような目の出方は ろに割り当てるかで3通り. 3×3+6×6=45 (通り) ある. 全ては等確率では出 45 5 ません!! 従って、求める確率は 216 24 4 演習題 (解答は p.47) 1から6までの目をもつ立方体のサイコロを3回投げる。 そして 1,2,3回目に出た目 をそれぞれ a, b, c とする. (1) a, b, c を3辺の長さとする正三角形が作れる確率を求めよ. (2)/α,b,cを3辺の長さとする二等辺三角形が作れる確率を求めよ。 (3) a, b, c を3辺の長さとする三角形が作れる確率を求めよ. (滋賀医大) まず a b c の組合せを 列挙する. 何かが小さい 順など, 系統的に数えよ う. (1) (2) 以外は3辺 の長さが相異なる. 37

回答募集中 回答数: 0