学年

教科

質問の種類

数学 高校生

数列(1次不定方程式) 写真2枚目の8行目から、または2枚目の4行目からkを使ってl-3とm-2を表すときについてです。 l-3とm-2両方とも同じkを使う理由が説明できません。それぞれ違う文字で置き換えなければ数値が違ってしまう、といった事が起きてしまうのでは……と思いま... 続きを読む

00000 重要 例題 93 2つの等差数列の共通項 の2つの数列に共通に含まれる数を, 小さい方から順に並べてできる数列a 等差数列{an}, {bn}の一般項がそれぞれ an=4n-3, bm=7n-5であるとき、こ の一般項を求めよ。 指針> an=1+A(n-1) であるから, 数列{an}の初項は1,公差は 4. bn=2+7(n-1) であるから、 数列 (6m}の初項は 2, 公差は7である。 具体的に項を書き出してみると +4は7回 + +4 +4 +4 +4 +4 +4 (an): 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 6 30. 37, 44, 51, 58, 23, 16, {bn}:2,9. +7 +7 +7 +7 +7は4回 よって{cm) 19, 37,65, ……… となり、これは初項 9. 公差 28 の等差数列である。 公差 47 の最小公倍数 このような書き上げによって考える方法もあるが, 条件を満たす数が簡単に見つからない (相当多くの数の書き上げが必要な) 場合は非効率である。 そこで, 1次不定方程式 (数学 A) の解を求める方針で解いてみよう。 a=b 共通に含まれる数が,数列{an}の第1項,数列{bn}の第m項であるとすると よって, l, m は方程式 41-3=7m-5 すなわち 4l-7m=-2の整数解であるからます この不定方程式を解く。 ......... 解として,例えば,l=kの式)が得られたら、これをa=41-3の1に代入すればよい。 ただし,kの値の範囲に注意が必要である (右ページの検討 参照)。 a=bm とすると 41-3=7m-5 よって 4l-7m=-2 ① l=-4, m=-2は①の整数解の1つであるから 4(+4)-7(m+2)=0 ****** 4(7k-4)-3-28k-19 求める一般項は, k を n におき換えて 65. **** ゆえに 4(+4)=7(m+2) 4と7は互いに素であるから, kを整数として l+4=7k, m+2=4k すなわち l=7k-4, m=4k-2 と表される。 ここで, l, m は自然数であるから, 7k - 4≧1 かつ 4k-2≧1 よりは自然数である。 よって,数列{cm}の第k項は,数列{an}の第1項すなわち第 (7k-4) 項であり Cn=28n-19 <l=3, m=2 とした場合は 検討 参照。 かつ 満たす整数であるから自 然数である。 数列{bn}の第m項すなわ ち第 ( 4k-2) 項としてもよ い。

回答募集中 回答数: 0
数学 高校生

線で引いたところ途中式お願いしたいです。 自分そこまで字があまりうまくありませんが、書いたので途中式教えてください!

110 2次不等式の解法 (4) 次の不等式を解け。ただし、qは定数とする。 x²+(2-a)x-2a≤0 例題 (2) ax Sax 文字係数になっても、 2次不等式の解法の要領は同じ。 まず、左辺=0の2次方程式を解く。 それには ①1 因数分解の利用 ②2 解の公式利用 の2通りあるが, ここで は左辺を因数分解してみるとうまくいく。 x²+(2-a)x=2a≤05 (x+2)(x−a) ≤0 [1] a<-2のとき, ① の解は a≦x≦-2 2]=-2のとき, ① は (x+2)² ≤0 よって、 解は x=-2 3] -2 <a のとき, ①の解は -2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 ー2<αのとき -2≦x≦a ax Sax から ax(x-1) ≤0... α<βのとき (x-a)(x-β)>0x<α,B<x (x-α)(x−ß)<0⇒a<x<ß α,βがα の式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2)x²の係数に注意が必要。 a>0,a=0, a < 0 で場合分け。 CHART (x-α)(x-B) 0の解αβの大小関係に注意 ...... x(x-1) ≤0 ■] a>0 のとき, ① から よって、 解は 0≤x≤1 e] α=0 のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 ] a<0のとき, ① から よって解は x≦0, 1≦x 上から 0.x(x-1)≦0 x(x-1)≥0 a>0のとき 0≦x≦1; α=0のとき すべての実数; a<0のとき x≦0, 1≦x 0000 [1] 基本106 [2] [3] to ① の両辺を正の数αで割る。 0≦0 となる。 は 「くまたい の意味なので、くと = のどち 一方が成り立てば正しい。 ① の両辺を負の数 α で割る 負の数で割るから,不等号 が変わる。 (2) について, ax² Sax の両辺をax で割って, x≦1としたら誤り。なぜなら, ax きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからであ

回答募集中 回答数: 0
数学 高校生

至急お願い致します 画像右のページ 上から2行目の式 2x-y=0 はどこから導き出すのですか? 教えてください

UNIT 2 図形と方程式 STEP 1 BASIC CHECK 12 14 (考え方 直線に関して対称な点直線 x+8-0 に関して、点P(-6, 3)と対称な点Qを求めよ。 京のは、直線に関して点Pと対称な点であるから、直線は線分PQの頂直二等分線である。 解答 直線は線分PQの垂直二等分線である。 点Qの座標を(a,b) とおくと, 線分PQの中点は(ab) これが直線上にあるから 3.9-5_b+3 +8=0 2 2 すなわち 34-b-20 ······ⓘ るから 3 1.3-1 a+6 すなわち a+3b-40 ② ①. ② より a-1.0-1 よって Q(1,1) ….. 香 を利用する。 また、直線PQ 直線に垂直であり、直線PQのであ←PQに交わるの .… ① x+2y+k0...... ② 円①の中心は原点(0, 0). 半径は5である。 また,円 ① の中心と直線⑦の距離をと すると d- Ik k √1+2 √5 円①と直線②が接するとき TEL -√5 √6 |k|-6 P(-5, 3) R =±5 ⓘ √6 20 0 Q (a,b) 16 【円と直線が接する条件】 - と直線が接するとき、定数の値を求めよ。 また、このときの被点の座標を求めよ。 考え方 円Cの中心と直線の距離をd. 円の半径をrとすると 円℃と直線が接する der 点の座標は、円の中心を通り直嫁に垂直な直線をとするとき、直線の交点の 座標として求めることができる。 である 解答 V6 a+5 上にある。 (2) 点二等分線 である。 連立方程式を解く。 点との距離の公式を利用す る。 原点を通り、直線②に垂直な直線は 2x-10① ②,③を立させて、交点の座標を求めると よって 5のとき、接点(-1,-2) k-3 のとき、魔点 〔別解〕 判別式を利用する。) ① ② からを消去すると 5 +4ky+k-50...... ④ 円①と直線②が接するとき、 ⑥は重解をもつから、判別式をDとすると D-(4k)-4-5-(²-5)-0 R-25 ±5 接点の座標は④の重解であるから 4k 2-5 ②から接点の座標は (1/2) 1-I のとき、接点(-1,-2) のとき、 接点(1,2) AN 円パー20は、中心が原点 半径が250円である。 2円の中心間の距離をdとすると d-√6 +3-3√5 求める円の半径とすると、 2円が外接する条件は 3√5-r+2√5 r-√√5 よって、求める円の方程式は (x-6)+(-3) - (√5)* すなわち (x-6)+(-3)=5 - 11 1612円の位置関係点 (6.3)を中心とし、20に外接する円の方程式を求めよ。 (考え方) 円と直線の位置関係と同様に,2円の位置関係についても半径と中心間の距離に注目して、図形的 に処理することを考える。 3 0 2√6 とするとがで あるから、 6 ←分数計算をさけるため、 ←日の代わりに ←のは De より 一日に 25 +20 ←3円の中心と める。 UNIT 2 1円のそれぞれ 円の中心 外接する とすると

回答募集中 回答数: 0
数学 高校生

写真の問題の(2)についてです。 解答の「これは0≦a≦2を満たさない」までは理解出来たのですがその続きが分かりません。教えていただきたいです。

146 00000 基本例題 85 2次関数の係数決定[最大値・最小値] (1) | (1) 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 を定めよ。 また, このとき最小値を求めよ。 | (2) 関数y=x²-2ax+a²-2a (0≦x≦2) の最小値が11 になるような止の定数 a の値を求めよ。 指針 関数を基本形y=a(x-p+gに直し,グラフをもとに最大値や最小値を求め (1) (最大値)=4 (2) (最小値)=11 とおいた方程式を解く。 (2) では,軸x=a(a>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 解答 (1)y=-2x2+8x+kを変形すると y=-2(x-2)^+k+8 よって, 1≦x≦4 においては, 右の図から, x=2で最大値k+8 をとる。 ゆえに k+8=4 よって k=-4 このとき, x=4で最小値-4 をとる。 (2) y=x2-2ax+α²-2a を変形すると y=(x-a)²-2a [1]0<a≦2のとき, x=α で 最小値-2αをとる。 2α=11 とすると α=- 合はこれは0<a≦2 を満たさない。 [2] 2 <a のとき, x=2で 最小値 22-2α・2+α²-2a, つまり²-6a+4をとる。 α²-6a+4=11とすると a²-6a-7=0 1 11 2 これを解くと 2 <a を満たすものは 以上から、求めるαの値は α=7 a=-1₁ 7 a=7 yA k+8 --A 1₁ 012 最大 [1] YA 軸 0 [2] Y 面 ・最小 02 -2a a 2 4 2 最小 +48 最小 a²-6a+4 i 2 x 軸 1 a 1 x 18 x ・基本 80, 82 重要 86\ < 18-²2}= 区間の中央の値は あるから、軸x=2は区 間 1≦x≦4で中央より 左にある。 ■最大値を=4 とおいて, んの方程式を解く。 ■ 「αは正」に注意。 0<a≦2のとき, 軸x=αは区間の内。 頂点x=αで最小。 の確認を忘れずに。 2<αのとき, 軸 は区間の右外。 →区間の右端 x=2で最 SIAHN (a+1)(a-7)=0 IN BIO 140 の確認を忘れずに。

回答募集中 回答数: 0
数学 高校生

この問題の別解から下の部分がよくわかりません。 教えていただけると助かります。よろしくお願いします。

基本例題 54 剰余の定理利用による余りの問題 (2) 整式 P(x) を x+1で割ると余りが-2, x2-3x+2で割ると余りが -3x+7であ るという。このとき, P(x) を (x+1)(x-1)(x-2)で割った余りを求めよ。 基本 53 重要 55 指針 例題 53 と同様に, 割り算の等式 A=BQ+R を利用する。 3次式で割ったときの余りは2次以下であるから,R=ax²+bx+c とおける。 問題の条件から,このα, b,cの値を決定しようと考える。 別解 前ページの別解のように、文字を減らす方針。 P(x) を (x+1)(x-1)(x-2) で 割ったときの余りを、 更に x2-3x+2 すなわち (x-1)(x-2) で割った余りを考える。 解答 P(x) を (x+1)(x-1)(x-2)で割ったときの商をQ(x), 余り をax²+bx+cとすると, 次の等式が成り立つ。 P(x)=(x+1)(x-1)(x-2)Q(x)+ax²+bx+c. ここで, P(x) をx+1で割ると余りは-2であるから P(−1)=-2. また, P(x) を x2 - 3x+2 すなわち (x-1)(x-2)で割ったとき の商を Qi(x) とすると P(x)=(x-1)(x-2)Q(x)-3x+7 ゆえに P(1)=4 よって, ① と ② ~ ④ より a-b+c=-2, a+b+c=4, 4a+26+c=1 この連立方程式を解くと したがって 求める余りは -2x2+3x+3 ...... ③, P(2)=1 a=-2,6=3,c=3 ………... 別解 [上の解答の等式 ① までは同じ ] x2-3x+2=(x-1)(x-2) であるから, (x+1)(x-1)(x-2)Q(x)はx-3x+2で割り切れる。 ゆえに, P(x) を x-3x+2で割ったときの余りは, ax²+bx+c をx2-3x+2で割ったときの余り)と等しい。 P(x) をx2-3x+2で割ると余りは-3x+7であるから ax2+bx+c=a(x2-3x+2)-3x+7 よって, 等式 ① は,次のように表される。 P(x)=(x+1)(x-1)(x-2)Q(x)+α(x-3x+2) -3x+7 P(−1)=6a+10 したがって P(x) を x+1で割ると余りは−2であるから P(−1)=-2 ゆえに 6a+10=-2 よって a=-2 求める余りは -2(x2-3x+2) -3x+7=-2x²+3x+3 3次式で割った余りは, 2 次以下の整式または定数。 <B = 0 を考えて x=-1, 1,2 を代入し,α, b,cの値を 求める手掛かりを見つける。 (第2式) (第1式) から 266 すなわち b=3 この解法は、下の練習 54 を解くときに有効である。 (*)ax²+bx+cを x2-3x+2で割ったときの 余りをR(x) とすると, 商 は α であるから P(x) =(x+1)(x-1)(x-2)Q(x) +α(x2-3x+2)+R(x) =(x2-3x+2) ×{(x+1)Q(x)+α}+R(x) 両辺にx=-1 を代入。

回答募集中 回答数: 0