学年

教科

質問の種類

数学 高校生

2番の問題です なぜa>-1、a<-1で場合分けしてるのですか?

こするのに で、(1 使用し, る. a¹, 下げ 例題 55 a 解答 2150% Focus ax SEJARLOT 考え方 文字係数を含む方程式を解く問題. 練習 55 *** Focus 文字係数の方程式 次の方程式を解け. x+1=0 (ii) a=0のとき よって, p.68 の例題 29 文字係数の不等式と同様に考える。つまり、見かけ上の最高次の項の 係数が0の場合とそうでない場合を分けて考える。 たとえば,(1)では, x2の係数αに着目すると, a=0のとき, x+1=0 となり, 1次方程式となる. a=0のとき, ax²-(a+1)x+1=0の2次方程式を考える。 のとき もとの方程式は、 -x+1=0 より, ax2+(-a-1)x+1=0 (Q+x+x)= (x-1)(ax-1)=0 より, (2)(a-1)(a+1)x²=α-1 (i) α=1のとき (2) (a²-1)x²=a-1 a=0 のとき, x=1 よって, a=0 のとき, x = 1, (ii)a=-1のとき もとの方程式は、 0.x2=0 このとき, xはすべての実数 x=1. ½-½ (ii) α≠±1 のと 平 α²-10 から、 両辺を²-1で割って, UN MA x²= 1 a+1 a>-1のとき, x = ±₁ a-1 のとき, 解なし a もとの方程式は, 0.x²=-2 これを満たす x は存在しないので、解なし CO x=1 a+1 完 **** BS)S-ve 1 √a+1 a+1 =+ a as-1のとき、解なし -US -1<a<1,1<a のとき, x=±- 平金 x2の係数が0のとき, x 2の項がなくなるの で,xの1次方程式に なる. -1→ -1→> α=1のとき, xがど このような値であっても, 0.x = 0 は成り立つ. a=-1のとき, xに どのような値を入れて も.0.x=-2 が成り 立たない. a-1 a²-1 aを定数とするとき, 方程式 ax2+(2-a)x-2=0を解け. =- 1 a+1 √a+1 a+1 (2) $30 II=D 文字係数の2次方程式(x2の係数) ≠0 に注意 a a-1 (a+1)(a-1) ->0 より, a+1>0 すべての つまり,a>-1 -1 -a-1 O 第2章 p.168 14

未解決 回答数: 1
数学 高校生

193.3 この記述でも問題ないですよね??

304 00000 基本例題 193 導関数と微分係数 (1) 関数f(x)=2x+3x2-8x について, x=-2における微分係数を求めよ。 (2) 2次関数f(x) が次の条件を満たすとき, f(x) を求めよ。 A (1)=-3. f' (1)=-1, f'(0)=3 (3) 2次関数f(x)=x2+ax+bが2f(x)=(x+1)f'(x)+6を満たすとき,定数の b の値を求めよ。 基本191) Webs 指針▷ (1) x=q における微分係数 f'(a) は,導関数 f'(x) を求めて, それに x = a を代入する。 簡単に求められる。 f(x)は2次関数であるから, f(x)=ax²+bx+cとする。アーム ②2 導関数 f'(x) を求め, 条件をa, b, c で表す。(笑) ③3 a,b,c の連立方程式を解く。 (3) 導関数 f'(x) を求め,条件の等式に代入する。一(d+xp(s+xmi= →xについての恒等式であることから, α, 6の値が求められる。 (2) 解答 (1) f'(x)=2.3x2+3・2x-8・1=6x²+6x-8 したがって f'(-2)=6・(-2)^+6・(-2)-8 =4 J3 (0+20) (2) f(x)=ax2+bx+c (a≠0) とすると (1) f'(x)=2ax+b() a+b+c=-3 2a+b=-1 f(1)=-3 から f' (1)=-1から f'(0)=3 から これを解いて したがって (3) f(x)=x2+ax+bから 与えられた等式に代入すると b=3 a=-2,6=3, c=-4 f(x)=-2x2+33-4 f'(x)=2x+α 1-2x3. = (d+xb) = ( 2(x2+ax+b)=(x+1)(2x+α)+6 整理して 2x2+2ax+26=2x2+(a+2)x+a+6 これがxについての恒等式であるから、両辺の係数を比較 すると 2a=a+2, 2b=a+6 これを解いて a=2, b=4 ^²(6+x)) = (+2) -3r²-12r+5@r=1 / tu TUALET 微分係数 f'(a) の求め方 [1] 定義 (p.296 [①])に従って 求める [2] 導関数 f'(x) を求めて、 x=a を代入する。 の2通りがある。 例題 1931) では [2] の方法の方が早い。 なお、定義に従うなら f(-2+h)-f(-2) h f'(-2)=lim または f'(-2)=lim として計算。 ho x-2 f(x) f(-2) x-(-2) 係数比較法。 1

回答募集中 回答数: 0
数学 高校生

数I文字係数の方程式の問題です。 (3)の解説を見たのですが、理解ができなかったので、解説をお願いしたいです。

例題 次のxについての方程式を解け。 (1) x2+(a−2)x-2a=0 (2) ax²-2x-a=0 (3) ax-2ax+a=0 思考プロセス (2),(3)問題文では,単に「方程式」 となっており,2次, 1次方程式とは限らない。 場合に分ける (x2の係数)=0のとき (x2の係数) ≠0のとき 1次方程式を解く 2次方程式を解く (例題82参照) Action » 最高次の係数が文字のときは, 0かどうかで場合分けせよ (1) x2+(a−2)x-2a=0 より (x-2)(x+a)= 0 x=2, -a よって 10 (2)(ア)a=0のとき,この方程式は これを解くと x = 0 (イ) α = 0 のとき, 解の公式により -(-1) ± √(-1)²-a (-a) x= AN (ア), (イ)より a ² +1>0 より,これは解として適する。 α = 0 のとき α = 0 のとき (ア)~ (ウ)より x= la=0のとき a=2のとき -2x = 0 α = 0, 2 のとき = x=0 x= (3) ²x-2ax+α = 0 より a(a−2)x=-a (ア) α = 0 のとき, この方程式は 0.x = 0 よって, すべてのxで成り立つから, 解はすべての実数。 (イ) a=2のとき, この方程式は 0.x = -2 この式は成り立たないから,解はない。( 1 (ウ) α = 0, 2 のとき -2 a- 1± √a² +1 1$ 1± √²+1 Ca a 20 0 = 88 - 1 2-a x²+(a+B)x+αβ=0 (x+α)(x+β)=0 a=0のとき, 与えられ た方程式は1次方程式と なる。 のとき U すべての実数 解なし 08-28- x = _ 1 (²-x) (S 2-a S- 2次方程式 ax2+26′x+c=0 の解は es x= -b'±√√b²-ac a α = 0 の可能性があるか ら、いきなり両辺をαで 割ってはいけない。 x=- a a(a − 2) 3 章 a(a−2) ≠0 より,両辺 をa(a−2) で割って a-2 ROCK JOHAJ 8 2-a 2次関数と2次方程

回答募集中 回答数: 0
数学 高校生

不等号の下に=がどういう時に付くのかがよくわかりません

例題129 三角関数 0≦0 <2のとき、次の不等式を解け. (1) 2 sin 02-1 (8 (2) 2 cos > IS 解答 (1) 2sin≧-1 より, sin0= - 考え方 三角関数を含む不等式は,まず「=(イコール)」とおいて,方程式を解くとよい あとは、例題128 (p.253) と同様に考える. ここでは単位円を用いて考えてみる =! よって、 右の図より、 7 11 osos, r≤0<2n <2π 6 (3) tan0≥-√3 5 より、0, (2) 2 cos >√3 h, cos 0>. √√3 cos0= より 2 よって、 右の図より sin 02 11 17/11/1/2π TC 6 6 11 0≤0<n<0<2n 6' л≤0<2n √3 2 11 -π 匹 6'6 7.11 tan0=-√3より.8=12/21. 1/23 5 よって、 右の図より 37 π 2 2' 3 1 2 9 17 15 3 (3) tan O -1 T 11 6 例題129 をグラフで考えると次のようになる. (1) YA (2) YA y=sine /color] 「53 -1 -√3- 1 O .7 6 π 6、 -TC TC y=coso 12 0 ale=0.4 √√3 2 1x 12 上 x AX x **** -√3 「まず 「=」とおいて入 程式を解く. 直線y=-12 より上り 0≦0.2より、2を 含まないことに注意す る. まず「=」とおいて 程式を解く. 0キ 直線x= 11 1/7<0</20 <θ< √3 しない まず「=」とおいて 程式を解く. 傾きが-√3よりも大 きい. (3) YA T 3 三角関数を含む不等式は、 まず 「=(イコール)」 とおいて、方程 式を解くの増加に伴い, sin 0, cos 0, tan 0 の値はどのよう に変化するか単位円を用いて考える Bo 回単 2'2" に注意する. より πであること by=tand F

回答募集中 回答数: 0
数学 高校生

?って書いてあるところがいみわかりません どうして急に=でつなげるんですか?? 教えてください!お願いします!!

へ 394 数学A 練習(1) 3x2+4xy-4y+4x-16y-15を因数分解せよ。 ⑨144 (2) 3x2+4xy-4y2+4x-16y-28=0 を満たす整数x,yの組を求めよ。 (1) 3x2+4xy-4y2+4x-16y-15 =3x2+(4y+4)x-(4y2+16y+15) = 3x²+(4y+4)x-(2y+3)(2y+5) ={x+(2y+3)}{3x-(2y+5)} =(x+2y+3)(3x-2y-5) 練習 1-3 ② +5 3+4 5÷4 (2) 3x2+4xy-4y²+4x-16y-28 =(3x2+4xy-4y²+4x-16y-15)-13であるから, (1) の結果 より (x+2y+3)(3x-2y-5)=13 x,yは整数であるから, x+2y+3,3x-2y-5 も整数である。 |x+2y+3=-13 よって 3x-2y-5=-1 x+2y+3=1 [3x-2y-5=13 これらの連立方程式の解は,順に (x,y)=(-3,-1),(-3,-1212) (4, -3),(4, 3) x,yがともに整数であるものは (x,y)=(4,-3),(4,3) 検討 (x+2y+3)(3x-2y-5)=13から, 約数を求め、 その後 に連立方程式を解くときには,次のような表を作ると計算し やすい。 x+2y+3 23x-2y-5 3 4 15 6 x+2y 3x-2y 4x x 2y -16 4 x+2y+3=-1 3x-2y-5=-13 ∫x+2y+3=13 3x-2y-5=1 -13 -1 1 13 -1 -13 13 1 -4 -8 -12-12 -3 -3 - 13 -1 ← 1 -2 10 18 6 16 16 4 4 -6 6 2y+3 ¹X (2y+5) 3 3 ... -(2y+3) (2y+5) (*) [神戸学院大] S ← (1) の結果を利用。 ←()()=(整数)の形。 x= 6y+9 →-2y-5 4y+4 ←13=(−13)(-1), (-1)(-13), 1・13, 13・1 y= Jx+2y+3=m [3x-2y-5=n m+n+2 4 3m-n-14 8 の解は (*) 2y が奇数となるも のは不適である

未解決 回答数: 1