学年

教科

質問の種類

数学 高校生

右側の数の数列の第k項はなぜ(n+1)+(k-1)・-1となるのでしょうか? 初項のn+1はk+1になおさないんですか?? 教えてください( * . .)”

日本 21 第項に 数列の和を求めよ。 を含む数列の 1.(n+1), 2·n, 3.(n-1), ..., (n-1)-3, n.2 443 0000O 基本1.20 重要 32 1 章 方針は基本例題 20同様, 第項ak をんの式で表し, a を計算である。 第n項がn.2 であるからといって,第ん項を k-2としてはいけない。 各項のの左側の数, 右側の数をそれぞれ取り出した数列を考えると の左側の数の数列 1,23 , n-1, n の右側の数の数列 n+1,n, n-1,....., 3,2 第項は →初項n+1, 公差 -1の等差数列 → 第項は (n+1)+(k-1)(-1) これらを掛けたものが,与えられた数列の第k項ak [nとkの式] となる。 Cak の計算では,kに無関係なnのみの式はの前に出す。 また, k=1 この数列の第項は k{(n+1)+(k-1)・(-1)}=-k2+(n+2)k したがって 求める和をSとすると - S=_{-k2+(n+2)}=-k2+(n+2) k n k=1 k=1 k=1 == =-1/n(n+1) (2n+1)+(n+2)/1/27 (n+1) =1/12n(n+1)-(2n+1)+3(n+2)} =1/11n(n+1)(n+5) 別解求める和をSとすると S=1+(1+2)+(1+2+3)+ ...... + (1+2+…………+n) +(1+2+... n +n) -1+2+---+ k)+(+1) k=1 k=1 k(k+1)+n(n+1) = 1 1 1 1 (k² + k) + n(n+1) ++(n+1) k=1 34-7543 =1/21/12m(n+1)(2n+1)+1/21n(n+1)+n(n+1)} <n+2はんに無関係 → 定数とみてΣの前に 出す。 ◆1n(n+1)でくくり { }の中に分数が出て こないようにする。 1+1+1+······ +1+1 2+2+ ...... +2 +2 3+ ...... +3+3 3種々の数 (+) n+n はこれを縦の列 |-12-10 (n+1)((2n+1)+3+6)-1/n(n+1)(n+5) = とに加えたもの

未解決 回答数: 0
数学 高校生

一番最初の式から分かりません教えてください🙏

Check 例題 284 自然数1,2, いろいろな数列の和 (1) 2 いろいろな数列 *** nについて,この中から異なる2つの自然数を選び, その積を計算する. このようにしてできる積の総和 Sm を求めよ. 考え方 たとえば, 3つの数a, b, cで考えてみると 舞台 T=ab+bc+ca が求める積の総和であり,さらに, (a+b+c)2=a+b2+c+2(ab+bc+ca) =a+b2+c+2T 2), T=(a+b+c)2- (a²+b²+c²)} ¿ts. この考え方を1, 2, 3, ......, nについて用いる. 123 n 1 2 ... n 6.2n 336 ... 3n 2 2 nn 2n3n... S=(1×2+1×3+... +1×n)+(2×3+2×4+…+2xn)+…+(n-1)×n 上の表の部分の和になっている.) 3つの数の場合と同様に考えると, (1+2+3++n)=(12+2+32++n²)+2S” であることがわかる. (1+2+3+…+n)=(12+2+32 +…+n)+2S,より, Sn= {(1+2+3+..+n)-(12+22+32+…+n2)} ( k: n \2 n k=1 11/11/12n(n+1)-1/n(n+1)(2n+1)] 考え方を参照 499 第8章 -n(n+1){3n(n+1)-2(2n+1)} 24 = 24 注 自然数1, 2,......,n (n-1)n(n+1)(3n+2) nに関して,この中の自然数んとその他の自然数との積の和は, k(1+2+......+n)k と表せる. n 1 2n(n+1)で くる。 これを用いると,2×Sn=_{k(1+2+ ・+nk2}となる. k=1 注》P=(x+1)(x+2)(x+3)×......×(x+n)の展開式はxのn次式となる. このとき x” の係数は 1, xn-1 の係数は 1+2+......+n= =1/2n(n+1)となる。 (x+n)のn個の( )について, では,x-2の係数はどのようにして求めればよいだろうか. Pを展開する際に,(x+1)(x+2), (x+3, )から数字を残り (n-2)個の()からxを選んで積を求めれば, 2個の x-2 の項を作ることができる. したがって, xn-2の係数の総和は、例題 284 と同様に考えればよい. つまり,x2の係数は -(n-1)n(n+1)(3n+2) となる. 24

回答募集中 回答数: 0