学年

教科

質問の種類

数学 高校生

至急です💦学校で出された数Aのレポートです。 範囲は三角形の五心です。 理由の説明の仕方などがわからないです、、 どなたか解説お願いします🙇‍♀️ (マーカーは自分が書いてたものなので気にしないでください、)

三角形の傍心について 「数学A」の教科書には以下のように記述してある。 三角形の1つの頂点における内角の二等分線と,他の2つの頂点における外角の二等分線は1点で交わる。 △ABCにおいて, この交点は3つの頂角∠A, ∠B, ∠Cの内部に1つずつある。これらを, そ れぞれ I1, I2, I3 とする。 I を中心とし, I ] から BCに下ろした垂線を半 径とする円は、辺BC および辺AB, AC の延長 に接する。 この円を頂角∠Aの内部の傍接円, I を傍心という。 I2, I3 はそれぞれ頂角 ∠B, [ZCの内部の傍心である。 Is (2) キュウくんの結論は、偶然と必然のどちらか選びなさい。 B' U 10 lokal これを読み, タンちゃんとキュウくんは以下のような会話をしている。 タンちゃん 「線分IA, I2B, IsCが1点で交わっているけど,これってこの図に限った話で, 偶然なのかな。」 キュウくん 「線分11A, I2B, IsCは,それぞれ∠A, ∠B, ∠Cの2等分線だから、△ABCにおいて,その点は (①) になっているよ。 だから1点で交わるのは (偶然必然) ② だよ。」 タンちゃん 「なるほどね、ありがとう! じゃあ, I I2I3に着目しても, 1点で交わることが偶然かどうかがわかるのか な。」 V JENSTEY キュウくん 「図を見ると, I AI2が90度っぽいから,外心か垂心になりそう (③)な気がする。この点が外心か垂心かどち らかであることが言えたら1点で交わることが偶然かどうかわかるのになあ。」 タンちゃん 「どちらをいうにも, ∠IAI とかが90度かどうか説明する必要がありそうだね。」 (1) キュウくんの発言における ( 内に入る用語を答えなさい。 AN (3) キュウくんの予想は外心か垂心であった。 どちらであるのか考えよう。 ※証明でなくてもよい。 ① 教科書を参考に、 外心と垂心はどんな3直線の交点であるか書きなさい。 ②外心と垂心のどちらであるか予想し, その理由を図や式や言葉で説明しなさい。 ※証明でなくてもよい 予想: 垂心である

回答募集中 回答数: 0
数学 高校生

大学の過去問なのですが答えがなくて困っています😭 教えて欲しいです🙏🏻🙏🏻🙏🏻

13 解答は、各問題の解答番号に該当する解答用紙の番号の欄に、「ア、イ、ウ・・・」の記号で答 えなさい。 1 次の問いに答えよ。 (1) 環小数 0.63 は分数でどのように表されるか。 次の中から選びなさい。 アx=-5,1 ア (2) 方程式 |x+213の解を次の中から選びなさい。 x = 5 7 a, b 〒30 63 1100 (3) 2つの集合 A. B と空集合 正しい記述を選んだ組み合わせを、次のア~カの中から選べ。 イ a, c ② 放物線Gを表す方程式 a. AUBはAとBの共通部分を表す。 b. A=Bが成立するとき、 AとBの要素が完全に一致する。 CANBAUBが成立する。 d. はどの集合にも属さない。 イ 48 アy = 2x2+4x-3 ウy=2x2+4x-1 オy=2x2-6x-1 アx = 1 7 n ≤3 In >3 数学 (解答番号 1~28) (4) 9000 の正の約数は何個あるか。 次の中から選べ。 7 x==3 イ x = 2 イ x = 1,5 オ x = 1 ウ 36 37 ゥー 63 a, d イx = 3 のうち正しい記述が2つある。 について、次のa~d (800 SPISOS) = b, c I 96 11 ウx = 51 イy=2x²-4x-1 xy=2x2+4x-7 イ<-3 n>-3 ウ x =3 オ 18 ウ x=-1 b, d 次の問いに答えよ。 (1) 二次方程式x-mx-7m-1=0 (mは定数)の解の1つがx=5のとき, この方程式の もう1つの解の値を次の中から選べ。 エx=-2 オ [解答番号1) エ x = 6 [番号] ウn -3 [解答番号 3] (2) 二次方程式x2 + nx + n +3=0 (nは定数) が重解を持つとき、n>0 とすると, この方 程式の解を次の中から選べ。 #c, d [解答番号 4] [解答番号9] [解答番号 10] オ x=-5 (3) 二次方程式x²+x+n+3=0(nは定数) が正の解と負の解をもつとき, nの値を表す ものとして正しいものを次の中から選べ。 [解答番号 11] オx=-3 [解答番号 12] 2 一次関数y=2x2-4x-6 について,次の問いに答えよ。 ENTS ア (-1.0), (-6.0) ウ (-1,0),(3,0) オ (-1,0), (8,0) (2) 二次関数y=2x24x6のグラフの頂点の座標を次の中から選べ ア (2,6) エ (1, -8) ア イ ウ エ オ (3) 二次関数y=2x²-4x-6の定義域が 0≦x≦3である場合,yの最大値と最小値の組み 合わせとして正しいものを次のア~オの中から選べ。 y=xのグラフとx軸との交点の標を次の中から選べて、 ア (2,-11) エ (-2,1) (4) 連立不等式 ①放物線の頂点の座標 最大値 (2x²-3x-5 <0 (1) 角が ア -2≦x<5 エ 2≦x<5 sin0 = 0 0 10 -8 10 二次関数y=2x2-4x-6のグラフを,x軸方向に-2, y 軸方向に5だけ平行移動して 得られる放物線の頂点の座標と, 放物線Gを表す方程式を,それぞれ次の中から選べ ア 次の問いに答えよ。 ①cose ②tan9 ア の解を表すものとして正しいものを次の中から選べ。 1 (0.-6) オ (-1.-8) イ (1,0), (-3.0) (1,0), (-8, 0) 90° < 6 <180° 1 最小値 -8 -6 -6 -26 - 8 イ (0,-1) オ (-1,-3) 1 ウ (06) を満たすとき, cose, tane の値をそれぞれ次の中から選べ。 2 3v5 イ -1 < x < 5 オ 解なし ウ (-3,-3) [解答番号 [5] [解答番号 6] w/N [解答番号 1] [解答番号8] ウ x-2.1 <x<5 [解答番号 13] [解答番号 14] √5 2 オ (2. [解答番号 15] √5 オ

回答募集中 回答数: 0