学年

教科

質問の種類

数学 高校生

1ページ目の(2)が、なぜ2ページ目の(3)のようにならないのでしょうか、区別の仕方が分からないです。教えてください。

mentos] 190 基本 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1)+2x+1>0 (3) 4x24x+1 (2) -4x+5>0 (4)~3x²+85-6>0 の不等式を ( [指針 平方完成した式から判断できる。 前ページの例題と同様、2次関数のグラブを いて、不等式のを求める。グラフととの共 点の有無は、不等号を番号におき換えた2次方 程式 ax+bx+c=0の の、または く '+2x+1=(x+1) であるから. 解答 不等式は よって、 は (x+1)0 1以外のすべての実数 (2)x4x+5=(x-2)+1であるから, 不等式は (x-2) +10 よって、解はすべての実数 (3) 不等式から 4x³-4x+150 4x4x+1=(2x-1)であるから, 不等式は (2x-11 50 1 よって、 解はx= 2 (4) 不等式の両辺に-1を掛けて 3.x²-8x+6<0 2次方程式 38x+6=0の判別式を D <KKK ADの場合、 基本形に 4x<-1-1 てもよい。 ADDの場合 基本形に、 関数コースー は、すべての y>0 して のとき 1のとき 721 (1) C Dとすると 22-4-3・6=-2 の係数は正で、かつであるから,すべてから、 xに対して3x²-2x+6> 0 が成り立つ。 よって、与えられた不等式の解はない 不等式の両辺に1を掛けて 3x-8x+6<0 x+6=3x1+1/3であるから、 x8+60を満たす実数は存在しない。 よって、与えられた不等式のはない +6 へのグラフと 住むグラフが下に あることから、すべ にして 次の2次不等式を解け。 111 (J)+x+420 (3) -4x+12-920 (2) 2x+4x+3<0

回答募集中 回答数: 0
数学 高校生

詳しく解説してください

重要 21 等式を満たす多項式の決定 00000 多項式f(x) はすべての実数xについてf(x+1)-f(x) =2x を満たし,f(0)=1 であるという。 このとき, f(x) を求めよ。 (一橋大 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+cとおいて進めることが 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺 2x と比較するこ →f(x)はn次式であるとして, f(x)=ax+bx-1+...... (a≠0, n≧1) とおいて できるが,この問題ではf(x) が何次式か不明である。 とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 f(x)=1 | この場合は,(*)に含 f(x) =c(cは定数) とすると, f(0)=1から 解答 これはf(x+1)-f(x) =2x を満たさないから,不適。 よって,f(x)=ax+bx"-1+...... (a≠0, n≧1)(*) とす 0=1+v-xl ると f(x+1)-f(x) 1+x=4 =a(x+1)"+6(x+1)"-'+…………-(ax"+bxn-1+…………) =anx-1+g(x) ただし,g(x)は多項式で,次数は n-1より小さい f(x+1)-f(x)=2xはxについての恒等式であるから、最 高次の項を比較して ①から れないため、別に考えて いる。 (x+1)^ =x+nCixcm-1+nCzx-2. のうち, a(x+1)+1-ax" 次の項は anx-1で りの頃は2次以 n-l=1 ・①, an=2. ②なる。 ....... xの次 係数を比較。 n=2 ゆえに、②から a=1 このとき,f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよ よって =2x+b+1 2.x+b+1=2x この等式はxについての恒等式であるから 結果は同じ b+1=0 係数比較法。 すなわち b=-1 木ゴル したがって f(x)=x-x+1

回答募集中 回答数: 0
数学 高校生

青チャート数2b 21の解説について。段取りはわかったのですがなぜanx^n-1という最高次数の項と2xが比較されているのでしょうか?恒等式というのは存じているのですが、g(x)の中に同じ次数を持ったやつがいる可能性はないのですか? 申し訳ないです。解説お願いします。

重要 例 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x)が2次式とわかっていれば, f(x)=ax2+bx+cとおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x)はn次式であるとして, f(x)=ax+bx-1+.. (a=0, n ≧1) とおいて 進める。 f(x+1)f(x)の最高次の項はどうなるかを調べ,右辺2x と比較するこ とで次数 n と係数 α を求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=c (cは定数) とすると, f(0) = 1から f(x)=1 解答これはf(x+1)- f(x)=2.x を満たさないから,不適。 よって, f(x)=ax+bxn-1+... ると (a≠0, n ≧1)(*) とす f(x+1)f(x) ...... =a(x+1)"+6(x+1)"'+......-(ax+bx"-1+.....) =anx-1+g(x) ただし, g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して n-l=1 ...... ..0, an=2 ..... ....... よって 2x+6+1=2x この等式はxについての恒等式であるから すなわち b=-1 したがって f(x)=x-x+1 ② b+1=0 基本 15 この場合は, (*)に含ま れないため、別に考えて いる。 ◄(x+1)" ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)^+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nCix"-1+nC2x"-2+... のうち, a(x+1)+1-ax” の最高 次の項は anxn-1 で 残 りの頃はn-2次以下と なる。 <anxn-1と2x の次数と 係数を比較。 係数比較法。 POINT 次数が不明の多項式は,n 次と仮定して進めるのも有効

回答募集中 回答数: 0