学年

教科

質問の種類

数学 高校生

二次方程式の解の存在範囲 f(2)>0 f(2)<0 (黄色の印をつけたところです) なぜ2を入れたらいいのか? なぜ>、<になるのか? 解説お願い致します🙇‍♂️

148 基本例題 95 2次方程式の解の存在範囲 (2)…との大小 [類 摂南大] NAZ 2次方程式x2−2(a-4)x+2a=0 が次の条件を満たすとき,定数aの値の POCO BO 範囲を求めよ。 VOITLUSTRAN 316 (1) ともに2より大きい異なる2つの解をもつ。 208 (2) 2より大きい解と2より小さい解をもつ CHART SOLUTION 813010 2次方程式の解とんとの大小 グラフをイメージ・・・ D, 軸と2との大小, f (2) の符号に着目 基本例題 94 は解と 0 との大小関係を考えたが,ここでは0以外の数んとの大小 関係を考える。 しかし、グラフ利用の基本方針は変わらない。 f(x)=x2-2(a-4)x+2α とすると, y=f(x)のグラフは下に凸の放物線。 (2) f(2) <0.① (1) D> 0, (軸の位置) > 2, f(2)>0 を満たすようなaの値の範囲を求める。 *<(0) [9] 0 解答 [s] [I] [8] f(x)=x2-2(a-4)x+2a とすると, y=f(x) のグラフは下 に凸の放物線で, その軸は直線x=α-4 である。 (1) 方程式f(x) = 0 がともに2より大きい異なる2つの解を もつ条件は,y=f(x)のグラフがx軸のx>2の部分と, 異なる2点で交わることである。 よって, f(x)=0 の判別式 をDとすると,次のことが同時に成り立つ。 軸>2 [1] D> 0 [2] (軸の位置) >2 [3] f(2)>0 [1] 2012 = (-(a-4)}-1・2a=q-10a+16=(a−2)(a-8) 4 D>0 から (a−2)(a-8)>0 OSA よって a<2,8<a Jedan [2] (軸の位置) > 2 から α-4>2 よってa>6 A ② [3] f(2) > 0 から 20-2a>0 よって a <10 ...... ①,②,③の共通範囲を求めて 8<a<10 (2) 方程式 f(x)=0 が2より大きい解と2より小さい解をも つための条件は, y=f(x)のグラフがx軸のx>2 の部分 とx<2の部分で交わることであるから (2) < 0 よって 20-2a<0 したがって a>10 ...... YA 0 2 A 2 0 2 6 基本 94 8 10 a 基

回答募集中 回答数: 0