学年

教科

質問の種類

数学 高校生

(2)が分かりません💦 学校ではここの解き方ではなく、傾きを使って解いていたんですが理解出来ませんでした😭 傾きを使った方法で教えて頂けませんか?🙇🏻‍♀️🙇🏻‍♀️

三角比を含む不等式の解法の100000 補充 例題 117 0°≧0≦180°のとき,次の不等式を満たすの範囲を求めよ。 √3 (1) cosA> (2) tan≧-1 2 CHART & SOLUTION 三角比を含む不等式の解法まずとおいた方程式を解く √3 2 まず (1) cose- (2) tan0=-1 を解く。 次に、下記の座標に注目して、 不等式を満たすの範囲を考える。 sin の不等式 半径1の半円上の点Pのy座標 COS の不等式・ 半径1の半円上の点Pのx座標 tan の不等式・ 直線 x=1 上の点のy座標 (2) tanについては, 090° であることに注意する。 解答 (1) 図において, cos0 はPのx座標 であるから、x座標が より 大きくなる0の範囲を求める。 √3 まず,cosθ=- を満たす0を 2 求めると 0=150° よって, 図から求める0の範囲は 0°≤0<150° (2) 図において, tan0は直線x=1 上の点Tのy座標で表されるから, 点Tのy座標が-1以上である の範囲を求める。 まず, tan0=1を満たす0を求 めると 0=135° よって, 図から求めるの範囲は 0°≤0<90°, 135°≤0≤180° P YA 150° √3 2 10 YA 1 O P T P 135° 1 11 x y OL x 基本112 (Px座標が より大きくなるのはP が半円周上で,直線 x=-1 より右側にあ 2 る場合。 すなわち母が 0°以上150° より小さい 場合。 (2) Ty座標が-1以上 になるようなPの存在範 囲を正確に求める。 tan 0 では0=90° である から 0° ≤0≤90° と90°に等号をつけない ように注意する。

回答募集中 回答数: 0