学年

教科

質問の種類

数学 高校生

数bの等比数列の質問です。この問題の⑵で立式がなぜこのようになり、式変形もどのようにやっているかがわかりません。教えていただきたいです。

Date 重要 例題 28 S2m, S2m-1 に分けて和を求める n 一般項がαn=(-1)+1n2 で与えられる数列 {an} に対して, Sn=ak とする。 (1) a2k-1+a2k (k= 1, 2, 3, ......) をんを用いて表せ (2) S= (n=1, 2, 3, ...) と表される。 指針 k=1 (2) 数列{an} の各項は符号が交互に変わるから,和は簡単に求められない。 次のように項を2つずつ区切ってみると Sn=(12-22)+(32-42)+(52-62)+...... =b2 =b1 =b3 上のように数列{bm} を定めると,b=akは自然数)である。よって,m を自然数とすると [1]nが偶数,すなわちn=2mのときはS2m=bx=(az-1+aan)として求め られる。 [2]nが奇数,すなわちn=2m-1のときは,S=S2-1+αm より S2m-1=S2m-a2mであるから, [1] の結果を利用して S2-1 が求められる。 このように、nが偶数の場合と奇数の場合に分けて和を求める a2k-1+αzk=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k (−1)偶数=1, (−1)奇数=-1 ={(2k-1)+2k} CUSTO×{(2k-1)-2k} Sm=(a1+a2) +(as+as)+...... +(a2m-1+azm) 451 1 3種々の数列 [1]=2mmは自然数)のとき = m m S2m (a2k-1+a2k) = (1-4k) n m= 2 k=1 k=1 =m-4.1/23mm+1)=-2m-m -であるから S.=-2(2)-=-n(n+1) [2]=2m-1(mは自然数)のとき azm=(-1)2m+1(2m)=-4m² であるから S2m-1=Szmazm=-2m²-m+4m²=2m²-m n+1 であるから m= 2 S₁=2(n+1)² - n+1 = (n+ 1 (n+1){(n+1)-1} 2 2 Sm=-2m²-mに m= =2を代入して,n の式に直す。 S2m=S2m-1+a2m を利用する。 Szm-1=2m²-mをnの 式に直す。 =1/12m(n+1) [1],[2] から Sn= (-1)"+1 -n(n+1) (*) (*) [1] [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。

回答募集中 回答数: 0
数学 高校生

質問失礼します! この問題、波線部分の数え上げは書き出してみて、実験してから一般化して考える感じでしょうか? 解答を作れるようになる考え方の流れを教えて頂きたいです。🙇🏻‍♀️

147 例題 14-4 袋の中に3枚(n≧2) のカードがあり,それぞれに, 1から2nまでの整数のど れか1つが書いてある. 奇数 1, 3, 2n-1の書かれたカードは各1枚, 偶数 2, 4,..., 2n の方は各2枚である. この箱から同時に2枚のカードを無作為に選び、 そのうち最大の数字を X とする. (1) 2≦k≦2mとするとき, 確率P (X≦k) を求めよ. (2) 2≦k≦2n とするとき 確率 P (X=k) を求めよ. 【解答】 (1) 3枚のカードから2枚を取り出す方法は, K:50時 11③⑤.7. よって, 以上まとめて, P(X≦k)= 3n(3n-1) k(3k-2) 4n(3n-1) (k-1)(3k-1) 4n(3n-1) (kが奇数のとき), P(X≦k) = k(3k-2) 4n(3n-1) (kが偶数のとき)。 3nC2= (通り) 3n(3n-1) 2.4.6.8. (2) (i) が奇数のとき, P(X=k)=P(X≦k) -P (X≦k-1). 2 (i) が奇数のとき (24.6.8. k+ 以下のカードは P(X=k)= (k-1)(3k-1) (k-1)(3k-5) k-1 n(3n-1) 4n(3n-1) 4n(3n-1) k+1 奇数のカードが #x, =k-1 )が偶数のとき, 偶数のカードが1枚 P(X=k)=- k(3k-2) (k-2)(3k-4) 4n(3n-1) 4n(3n-1) k+1 計 +k-1= 3k-1 2 枚あるから, X≦kとなる場合の数は 2(k-1) n(3n-1) 3k-1.3k-3 異なる 2 14- 2 よって、31枚から (2枚取り出す。 99 (3k-1)(3k-3) P(X≦k)= 3n(3n-1).4 (3k-1)(k-1) () が偶数のとき, k以下のカードは 4n(3n-1) 奇数のカードが1枚 偶数のカードがk枚 +k=k枚あるから, X≦kとなる場合の数は 22C2= 2 148

回答募集中 回答数: 0
数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0
数学 高校生

(3)の解説で 「ここで、~」以降のところがわからないので教えて欲しいです!!

第3章 47 軌跡(V) mを実数とする.ry平面上の2直線 76 基礎問 基礎問 とは、入試 問題を言い この「基礎 まとめてあり について,次の問いに答えよ. 98 出題される げ 教科書 ■ 。 特に、 5/8 ■アできる mx-y=0.① +m x+my-2m-2=0 ......②2 (1) ①,②はmの値にかかわらず,それぞれ定点 A,Bを通る。 A,Bの座標を求めよ. ○ (2) ① ②は直交することを示せ. (3) ①②の交点の軌跡を求めよ. 一つのテー ーマは原 やすくな 精講 (1) 「mの値にかかわらず」 とあるので,「mについて整理」して mについての恒等式と考えます. (37) (2) ②が 「y」 の形にできません. (36) ことはないので(注), (0, 2)は含まれない. よって、 求める軌跡は O-8 円 (x-1)+(y-122 から, 点 (02)を除いたもの. 注 一般に,y=mx+n 型直線は, y 軸と平行な直線は表せません. それは,yの頭に文字がないので,m,nにどんな数値を代入しても 77 必ず残って,r=kの形にできないからです。 逆に,xの頭には文 字がついているので,m=0 を代入すれば,y=nという形にでき, 軸に平行な直線を表すことができます。 45 の要領で①,②の交点を求めてみると 参考 2 (1+m) 2m(1+m) x= 1+m² 1+m²,y= となり,まともにmを消去しようとすると容易ではなく, 除外点を見つける こともタイヘンです. もしも誘導がなければ次のような解答ができます. こ aisons れが普通の解答です. x=0 のとき,①よりm=¥で割りたいの (3) ①②の交点の座標を求めて, 45 のマネをするとかなり大変です したがって,(1),(2)を利用することを考えます。このとき、4 IIIを忘れてはいけません. IC で≠0. r=0 ②に代入して y² 2y -2=0 で場合分け I IC 解 答 :.x'+y2-2y-2x=0 .. (x-1)+(y-1)²=2 YA 2 (1)の値にかかわらずmx-y=0が成りたつとき, x=y=0 A(0, 0) ②より (y-2)m+(x-2)=0 だからy-2=0、x=0mについて整理 .. B(2, 2) 次に, x=0 のとき,①より,y=0 0 これを②に代入すると,m=-1 となり実数が存在するので 点 (0, 0) は適する. 以上のことより, ① ②の交点の軌跡は円 (x-1)+(y-1)²=2 から点 (0, 2) を除いたもの. (2) m・1+(-1)・m=0 だから, aia2+bib2=0 36 ポイント ①,②は直交する. より, ∠APB=90° (3)(1),(2)より ① ② の交点をPとすると ① 1 ② ある円周上にある. その際, 除外点に注意する 定点を通る2直線が直交しているとき, その交点は, y 2 よって、円周角と中心角の関係よりPは2点A, B よって, (x-1)^2+(y-1)²=2 また,AB=2√2 より 半径は2 Bを直径の両端とする円周上にあるこの円の中 心は ABの中点で (11) (1泊) 演習問題 47 0 A 2x ここで,①はy軸と一致することはなく、 ②は直線 y=2 と一致する tを実数とする. ry 平面上の2直線 l : tx-y=t, m:x+ty=2t+1 について, 次の問いに答えよ. (1) tの値にかかわらず, 1, mはそれぞれ, 定点 A, B を通る. A,Bの座標を求めよ. (2), mの交点Pの軌跡を求めよ.

回答募集中 回答数: 0
数学 高校生

この問題の(3)の解説(2ページの丸で囲んでる部分がよくわからないです… 何故Xの得点は(2-5)と(8-5)ばかりなのでしょうか? 3点や4点もグラフにあるのに何故省かれているのでしょう、、 教えてください!

step2 鉄則を使う 下の表Ⅰは、20人の生徒が行った2つのゲームX,Yの得点結果をまとめたものである。 表の横軸はXの得 点を,縦軸はYの得点を表し、表中の数値は,Xの得点とYの得点の組み合わせに対応する人数を表している。 ただし,得点は0以上10以下の整数値をとり、空欄は0人であることを表している。例えば,Xの得点が 6点でYの得点が7点である生徒の人数は2である。 また,IIはXとYの得点の平均値と分散をまとめたものである。 ただし, 表の数値はすべて正確な値であり、 四捨五入されていない。 以下,小数の形で解答する場合は、指定された桁まで解答せよ。 #I 表Ⅱ (点) 10 X Y 9 1 8 7 2 232211 2 平均値 A 6 2 1 分散 4.00 7.0 B Y 5 4 1 3 2 1 0 012345 6 7 8 9 10 X (点) (1)20人のうち, Xの得点が5点の生徒はア人であり, Yの得点がXの得点以下の生徒はイ人である。 . (2)20人について, Xの得点の平均値Aはウ エ点であり,Yの得点の分散Bの値はオ である。 カキ (3)20人のうち, Xの得点が平均値 ウ エ点と異なり,かつ, Yの得点も平均値 7.0点と異なる生徒 はク人である。 20人について, Xの得点とYの得点の相関係数の値はケコサシである。 ア( ( ウ エ オ( )力( キ ク( ケ ( ) コ サ ) シ(

回答募集中 回答数: 0