学年

教科

質問の種類

数学 高校生

写真の解説の部分を見ていただきたいのですが、どうして下に凸や上に凸のグラフだとわかるのですか。また、なぜ通る点がわかるのか教えてほしいです。解説の言っていることが全体的に分からなくて、、

基本 例題 90 2次不等式の解から係数決定 00000 (1) xについての2次不等式x2+ax+b20 の解が xs-1, 3≦x となる ように, 定数a, bの値を定めよ。 (2)xについての2次不等式 ax²-2x+b>0の解が2<x< 1 となるよ うに、定数α, bの値を定めよ。 CHART & SOLUTION 2次不等式の解から係数決定 2次関数のグラフから読み取る => 答 y=x+ax+b のグラフが xs-1, 3≦xのときだけx軸を含む上側にある。 下に凸の放物線で2点 (1,030) を通る。 y=ax²-2x+b のグラフが-2<x<1のときだけ軸の上側にある。 上に凸の放物線で2点 (2,0), (10) を通る。 (1)条件から, 2次関数 y=x2+ax+b のグラフは,x-1,3≦x のときだ けx軸を含む上側にある。 すなわち、下に凸の放物線で2点 (1,030) を通るから 1-a+b=0, 9+3a+b=0 これを解いて なんで α=-2,b=-3 わかった (2)条件から, 2次関数y=ax²-2x+b のグラフは,-2<x<1のときだけx 軸の上側にある。 すなわち, 上に凸の放物線で2点 2010 を通るから a<0 0=4a+4+b 0=α-2+b ① ① ② を解いて a=-2, b=4 3 基本 87 (1)x13xを 解とする2次不等式の1つ は (x+1)(x-3) 20 左辺を展開して x²-2x-3≧0 の係数は1であるから、 x2+ax+b≧0の係数と比 較して α=-2,b=-3 inf 2つの2次不等式 ax2+bx+c<0 と a'x²+b'x+c<0 の解が 等しいからといって,直ち に a=α', b=b',c=c とするのは誤りである。 + 1 対応する3つの係数のうち、 少なくとも1つが等しいと きに限って、残りの係数は 等しいといえる。 例えば, c=c' であるならば、 |a=a', b=b' といえる。 151 3歳 11 2次不等式 これは α <0 を満たす。 PRACTICE 90® xについての2次不等式 ax²+9x+2b>0 の解が4<x<5 となるように, 定数a, bの値を定めよ。 36m>4

解決済み 回答数: 1
数学 高校生

この125の[1][2]の話なのですが、チャートに付いている解説を聞いてみたら、∠Aは向かいの辺が一番大きくなることはないから鈍角にはならないと言っていましたが、∠Cも向かいの辺が一番大きくなることはないのではないかと思いわからなくなりました。 教えて欲しいです🙇‍♀️

基本 例題 125 鈍角 (鋭角) 三角形となる条件 △ABCにおいて, a=4, b=5 とする。 1辺の長さc の値の範囲を求めよ。 (2)△ABCが鈍角三角形のとき、辺の長さの値の範囲を求めよ。 CHART & SOLUTION 三角形の成立条件 a <b+c, b<c+a,c<a+b ZA Da²<b²+c² p.194,195 基本事項 3. 辺と角の関係 ∠Aが直角 ∠Aが鈍角 a=b2+c a²>b2+c2 205 (1) 三角形の成立条件, (2) 鈍角三角形となる条件からの値の範囲を求める。 (2)では,∠Bが鈍角の場合と∠Cが鈍角の場合があることに注意する。 解答 4 14 081= 別解 (1) 三角形の成立条 件から (1) 三角形の成立条件から 4 4<5+c, 5<c+4, c<4+5 CV) - 081 整理して -1<c, 1<c, c<9 共通範囲を求めて 1 <c <9 ...... ① 2) 辺BC は最大辺ではないから,∠Aは最大角ではない。 すなわち, ∠Aは鈍角ではない。 [1] ∠B が鈍角のとき b2c2+α から よって c²<9 c> 0 であるから [2] ∠C が鈍角のとき c2> d' + b2 から よって c²>41 c>0 であるから 52c2+42 0<c<3......②. C242+52 c√41 ③ la-bk<c<a+b よって |4-5| <c<4+5 ゆえに 1 <c <9 (p.1954 ② 参照) [1] ∠B が鈍角 A #OBAL 5 4 B [2] ∠Cが鈍角 C 15 ② ③ を合わせた範囲は 0<c<3, √41 <c ...... ④ √41<c よって, 求めるcの値の範囲は,① ④の共通範囲で 1<c<3, √41<c<9 B 4 ← ① かつ (② または ③ 内角のどれか1つが鈍角

解決済み 回答数: 1
数学 高校生

相加平均相乗平均の問題です 最初になにをしてるんですか?

(7) 件の確認が必要である平均)(相乗平均)を利用。 人にように定数を補い, (相加平均) ≧ (相乗平均)を利用。 CHART & SOLUTION 基本 積が定数である正の数の和の最小値 (相加平均) ≧ (相乗平均)を利用 吉日と白の大小関係 2 から a+bの最小値を求めることができる。 CH 式の 2式 べる を求 基本 例題 31 相加平均・相乗平均を利用する最小値 (1)x>0 のとき, x+-の最小値を求めよ。 9 証明せよ。また、毎号 基本 (2)x>0 のとき, x+ 9 x+2 の最小値を求めよ。 0< p.42 基本事項 5. a+bz√ab において, ab=k(一定)の関係が成り立 → 解答 (1)x>0, 20であるから,相加平均と相乗平均の大小関 ↓ 相加率) 9 係により 9 相加平均と相乗 大小関係を利用する この x+2 X・ =2.3=6 XC x 解答 等号が成り立つのはx=- 9 明 すなわち x=3のとき。 9 x ← x=- よって、x=3で最小値6をとる。 を明示する。 =から=9 x x>0 であるからょ a+ 0<d よっ 20 (2)x+ 9 x+2 =x+2+ 9 x+2 また -2 x>0より x+2>0, 9 x+2 ->0 であるから, 相加平均と相 2つの項の積が足 なるように,x+20 を作る。 した であ [1] 乗平均の大小関係により [2] x+2+ ≧2. x+2 =2.3=6 x+2 x+2 ゆえに9x+29_2 x+2 -2≧6-2=4式の値が4になるよ M 値が存在する [3] 等号が成り立つのは x+2= 9 のとき。 x+2 このとき (x+2)2=9 とを必ず確認する。 立号成立は 9 した x+2>0 であるから x+2=3 (2) x>1 のとき, x+ 1 の最小値を求めよ。 x-1 したがって, x=1で最小値4をとる。のときされ PRACTICE 31実の方 3 b,c,dは正の数と (1) x>0 のとき, x+ 16 次の不等式が成り立つことを証明せよめ の最小値を求めよ。 北平米日(日) ORA 2- 5-0 ゆえに x+2= x+2 96 x=1 かつ x+2+- x+2 2(x+2)=6 として求めてもよい

未解決 回答数: 0
数学 高校生

この赤枠のところの、両辺に16をかけるのは何故ですか? 教えて欲しいです!

[大阪産大〕 基本 113 CHART & SOLUTION 三角比の計算 かくれた条件 sin20+cos'0=1 を利用 かくれた条件 sin'0+cos20=1 tan の値は sino, cose の値がわかると求められる。 そこで を利用して, sino, cose についての連立方程式 4cos0+2sin0=√2, sin20+cos20=1 を解く。 → cose を消去し, sin0の2次方程式を導く。 解答 4cos0+2sin0=√2 を変形して 4cos0=√2-2sin sin20+cos20=1の両辺に 16 を掛けて 16sin20+16cos20=16 ①を②に代入して 16sin20+(√2-2sin0)²=16 10sin20-2√2 sin0-7=0 4cos0 +2sin=√2 4章 (2) を条件式とみて、条件式 は文字を減らす方針で COS を消去する。 13 三角比の拡張 整理して さ ここで, sin0=t とおくと 10t2-2√2t-7=0 これを解いて t=- √2 ± 6√2 ( (*) 10 よって t=-1 √2 7√2 2' 10 0° <0 <180°であるから 0<t≤1 これを満たすのは 7/2 t= 10 すなわち sin0= 7√2 10 ①から 4 cos 0=√2-2-- 7/2 2√2 10 5 ゆえに cos 0=√2 10 sine 7/2 √2 したがって tan 0=- =-7 Cos 10 10 (*) 2次方程式 ax2+26'x+c=0 の解は x=- - b' ±√b^2-ac a int sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 0°<0 <180° から cos = √2 √2 2' の2 10 つが得られるが, √2 cos 0=- のときは 2 sin0 <0となり適さない。 この検討を見逃すこともあ るので, cose を消去して, 符号が一定 (sin0 > 0) の sin を残す方が, 解の吟味 の手間が省ける。 PRACTICE 1160 0°≦0≦180°の 0 に対し,関係式 cose-sino=1/23 が成り立つとき,tanøの値を求 めよ。

解決済み 回答数: 1
数学 高校生

最後のd^2からdを考える際、X=3はそのままなのに、18は3‪√‬2になっているのは何故ですか?

18 基本 例題 67 最大 座標平面上で,点Pは原点Oを出発して, x軸上を毎秒1の速さで点 (6,0 0まで進む。この間にP, Q間の距離が最小となるのは出発してから何秒後 まで進み,点Qは点Pと同時に点 ( 0, -6) を出発して,毎秒1の速さで原点 か。また,その最小の距離を求めよ。 CHART & SOLUTION 基本 t秒後のP, Q間の距離をd とすると,三平方の定理からd=f(t) の形になる。ここで f(x)の最大・最小 平方したf(x) の最大・最小を考える d0 であるから,d=f(t)が最小のときdも最小となる。 解答 0≤1≤6 出発してからt秒後のP, Q 間の距 離をdとする。 P, Qは6秒後にそ れぞれ点 (6,0), (0, 0)に達するか ・① ら YA 6 x このとき, OP=t, OQ=6-t であ るから,三平方の定理により d2=12+(6-t)2 =2t2-12t+36 =2(t-3)2+18 tのとりうる値の範囲。 点Qのy座標は t-6 基本形に変形。 ① において, d は t=3 で最小値18 をとる。 d0 であるから,dが最小となるときdも最小となる。 よって, 3秒後にP,Q間の距離は最小になり,最小の距離は √18=3√2 軸t=3は①の範囲内。 この断りは重要! INFORMATION dの大小はdの大小から 例題では,d=√2+62 の根号内の a2+62 を取り出して まずその最小値を求めている。 これはd>0でd が変化す るなら, dが最小のときも最小になるからである。 右のグラフから, 大B2 (x≥0) d² A2 A≥0, B≥0, d≥0 * Ad≤B A²≤d²≤B² つまり,d≧0 のときdの大小はdの大小と一致する。 0 Ad B X 小 大

未解決 回答数: 0
数学 高校生

数学 一枚目が問題と解答で二枚目が自分の考えなのですが、解答は微分で考えてて自分は判別式で考えて答えは同じなのですが、いいのでしょうか?

要 例題 176 2 曲線が接する条件 「共 00000 2つの放物線y=x2 と y=(x-α)2 +2 がある1点で接するとき、定数α の値を求めよ。 CHART & SOLUTION [類 慶応大] 基本174 重要 177 2曲線y=f(x), y=g(x)がx=p の点で接する条件 f(b)=g(カ)かつf'(b)=g'(p) 「2曲線が接する」 とは, 1 点を共有し、かつ共有点における接線 が一致すること(この共有点を2曲線の接点という)。 接点のx座標をとおいて 接点を共有する ⇒f(b)=g(b) 接線の傾きが一致するf'(b)=g' (b) を満たすαの値を求めればよい。 解答 f(x)=x2, g(x)=(x-a)2 +2 とすると f'(x)=2x, g'(x)=-2x+2a 2曲線が1点で接するとき, その接点のx座標をとすると f(p)=g(カ) かつ f'(b)=g'(p) y=f(x)/ y=g(x) p x g(x)=(x-a)2+2 =-x2+2ax-a2+2 f(p)=g(p) が成り立つ。 接点のy座標が一致 よって2=(p-a)2+2 ① *S=V f'(p)=g'(p) Ch 2p=-2p+2a ② 接線の傾きが一致 ②から a=2p ③ 意味する これを①に代入してp=-(p-2p)+2 ゆえに P2=1 ③から,αの値はのと為 p=1のとき -2) これを解いてえにか=±10 α=-2, p=1 のとき a=2 式は a=-2 ly=f(x) 2=2+2から inf. 接点の座標は 275 xa=-2 のとき (-1, 1) y=f(x)+α=2 のとき (1,1) 接線の方程式は 左=2のとき y=-2x-12 x +a=2のとき -10 x の。 01 DS 方 y=g(x) y=g(x) 上の数 以上の 関数 方針 となり、方針図が開範囲が広いことが BACTICE 1769 .0=v - 1,0=D y=2x-1 24010

解決済み 回答数: 1