学年

教科

質問の種類

数学 高校生

この基本例題27の(2)が解説を読んでもよくわからず、もう少し詳しく教えて欲しいです。お願いします。

300 基本 例題 27 同じものを含む順列 00000 J,A,P,A,N, E, S, E の8個の文字全部を使ってできる順列について、 次のような並べ方は何通りあるか。 (1) 異なる並べ方 (2)JはPより左側にあり,かつPはNより左側にあるような並べ方 CHART & SOLUTION p.293 293 基本事項 2 同じものを含む順列 |1 そのまま組合せの考え方で n! ②公式 p!g!r!...... (p+gtr+=n)を利用 0 ここでは,上の②の方針で解く。 (2) まず, J, P, N を同じ文字Xとみなして並べる。 並べられた順列において、3つのX を左から順にJ,P,Nにおき換えれば条件を満たす順列となる。 例:XAXAXESE と並べ, JAPANESE とおき換える。 解答 (1)8個の文字のうち, A, Eがそれぞれ2個ずつあるから 8! 2!2!1!1!1!1! 8.7.6.5.4.3 2.1 -=10080 (通り) ←1!は省略してもよい。 別解 8個の場所から2個のAの位置の決め方は 残り6個の場所から2個のEの位置の決め方は 残り4文字の位置の決め方は 4! 通り C2通り ①の方針。 C2通り よって 8C2×62×4!= 8.7 6.5 -X -×4・3・2・1 2.1 2.1 ←積の法則。 =10080 (通り) (2) 求める順列の総数は, J, P, Nが同じ文字, 例えばX, X, X であると考えて, 3つのX, 2つのA, 2つのE, 1つのSを1列に並べる方法の総数と同じである。 8! 8.7.6.5.4 よって -1680 (通り) 3!2!2!1! 2.1×2.1 別解 1 の方針で解くと 8C3 X5C2 ×3C2×1 8-7.6 5.4 -x3x1 3・2・12・1 =1680 (通り) POINT 並べるものの位置関係が決められた順列 位置関係が決められたものを すべて同じものとみなす PRACTICE 27Ⓡ internet のすべての文字を使ってできる順列は通りあり、そのうちどのも どのeより左側にあるものは 通りである。 [ 法政大 ]

未解決 回答数: 1
数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0
数学 高校生

下線部のところなんでですか?🙇‍♂️

370 基本 例題 13 複利計算と等比数列 毎年度初めにα円ずつ積み立てると, n 年度末には元利合計はいくらになる か。 年利率を、1年ごとの複利で計算せよ。 CHART & THINKING nの問題 n=1,2,3, ・・・で調べてn化 (一般化) 中央大 p.365 基本事項3基本11 「1年ごとの複利で計算」とは、1年ごとに利息を元金に繰り入れて利息を計算することを いいこの計算方法を複利計算という。 なお,1年度末の元利合計は、次のように計算される。 (元利合計)=(元金)+(元金)×(年利率)=(元金)×(1+年利率) この例題をn=3として考えてみると,各年度初めに積み立てるα円について,それぞれ 別々に元利合計を計算し、 最後に総計を求めることになる。 a 積み立て ← 1年度末 a(1+r) a 積み立て ← 2年度末 3年度末 a(1+r)² a(1+r)³ a(1+r) a(1+r)² a 積み立て a(1+r) 上の図から、3年度末には α(1+r)+α(1+r)2+α(1+r) 円になる。 これをもとに, n 年度末の元利合計を和の形で表そう。 解答 各年度初めの元金は,1年ごとに利息がついて(1+r)倍と ← α円は なる。 D にα ( 1 + r) 円, よって,第1年度初めのα円は第n 年度末には α(1+r)"円, 第2年度初めのα円は第n年度末にはα(1+r)1円 2年後にα(1+r)2円, となる。ゆえに、求める元利合計Sは,これらすべての和で S=a(1+r)"+a(1+r)"-1++a(1+r) (F) これは, 初項 α(1+r), 公比 1+r, 項数nの等比数列の和で あるから, 求める元利合計は (1+r)-1 S= a(1+r){(1+r)"-1}__a(1+r){(1+r)"−1} (円) r PRACTICE 128 ......n …… 年後にα(1+r)" 円になる。 α(1+r) を初項, α(1+r)" を末項とする。 Jei

未解決 回答数: 1
数学 高校生

黄チャートの数Iの例題45で、なんとなく意味は理解できた感じがするんですけど、同じことを自力で書こうとするには無理で、それってまだ自分が完璧には理解できていないとおもうので、背理法のコツとか、背理法をマスターする方法とか、この問題の解説的なものを教えて頂きたいです🙇‍♀️

基本 例題 45 √3 が無理数であることの証明 00000 命題 「n は整数とする。 n2 が3の倍数ならば, nは3の倍数である」 は真で ある。これを利用して、√3が無理数であることを証明せよ。 基本 44 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 √3 が無理数でない (有理数である) と仮定する。 このとき,√3=r(rは有理数)と仮 定して矛盾を導こうとすると,「√3=rの両辺を2乗して, 3=2」 となり,ここで先に進 めなくなってしまう。そこで,自然数 a, b を用いて√3 = (既約分数)と表されると仮 定して矛盾を導く。 解答 a √3 が無理数でないと仮定する。 このとき 3 はある有理数に等しいから, 1 以外に正の公約 数をもたない2つの自然数a, b を用いて、3= とされる。 ゆえに 両辺を2乗すると a=√36 a2=362 よって、2は3の倍数である。 050+ α2が3の倍数ならば, aも3の倍数であるから, kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって、62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 ← 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という(数学A参照)。 ←下線部分の命題は問題 文で与えられた真の命 題である。 なお、下線部 分の命題が真であるこ との証明には対偶を利 使用する。 したがって√3 は無理数である。 INFORMATION ■に伝わります。 Eb.d 例題で真であるとした命題 「n2が3の倍数ならば, nは3の倍数である」 の逆も真で ある。 また, 命題 「n2 が偶数 奇数) ならば, nは偶数 (奇数) である」 および, この逆 も真である。 これらの命題が真であること, および逆も真であるという事実はよく使 われるので,覚えておこう。 PRACTICE 45Ⓡ 3 つまず 命題「n は整数とする。 n2 が7の倍数ならば, nは7の倍数である」 は真である。こ れを利用して√7 が無理数であることを証明せよ。 2 C 集

未解決 回答数: 0
数学 高校生

A外れの場合5/19 Aあたりの場合4/19 よってBの確率は9/19って考えたんですけど、これはどうして違いますか??また、チャートはどのように考えてこの求め方ですか?

320 基本 例題 38 確率の加法定理 ( 順列) 00000 20本のくじの中に当たりくじが5本ある。 このくじをa,b 2人がこの順に、 1本ずつ1回だけ引くとき, a, b それぞれの当たる確率を求めよ。 ただし 引いたくじはもとに戻さないものとする。 p.312 基本事項 CHART & SOLUTION 確率 P(AUB) A,Bが排反ならP(A)+P(B) bが当たる場合は,次の2つの事象に分かれる。 Baがはずれ, bは当たる Aが当たり bも当たる よって, 事象A, B の関係(A∩BØかどうか)に注目する。 解答 P 5 1 aが当たる確率は 20P1 20 4 次に, a, b 2人がこの順にくじを1本ずつ引くとき,起こり うるすべての場合の数は 24P2=380 (通り) 2本のくじを取り出して、 このうち, bが当たる場合の数は Aa が当たり, bも当たる場合 Baがはずれ, b が当たる場合 5P2=20 (通り) a,bの前に並べる場合 の数。 15×5=75 (通り) A. Bは互いに排反であるから, 確率の加法定理により, bが当たる確率は 20 P(AUB) P(A)+P(B)=- 75 95 1 + 380 380 380 4 事象A,Bは同時に起 こらない。 INFORMATION 当たりくじを引く確率は同じ 上の例題において, 1本目が当たる確率と2本目が当たる確率はともに等しい。 一般に,当たりくじを引く確率は,引く順番に関係なく一定である。 また、引いたくじをもとに戻すものとすると, 1本目が当たる確率と2本目が当たる 確率はともに 11 である。したがって 1 当たりくじを引く確率は、引く順、 もとに戻す もとに戻さないに関係なく等しい。 PRACTICE 38° 20本のくじの中に当たりくじが4本ある。 このくじをa, b,c3人がこの順に1本 ずつ1回だけ引くとき、 次の確率を求めよ。 ただし、引いたくじはもとに戻さない のとする。 (1) aが当たり,cも当たる確率 (2) は 確率

未解決 回答数: 2