学年

教科

質問の種類

数学 高校生

数ⅠAデータの分析です これどうして6番は◎になるんですか?? 例えば第一四分位数が整数でないとき、それより小さい値を削除したら最小値は第一四分位数より大きくなって範囲が変わりますよね? 画像横ですみません

650 700 (分) 図1 15歳以上の男性の各活動の時間(単位:分) の47都道府県別の平均値の箱ひげ図 I 450 オ 500 550 このデータと箱ひげ図について, 正しいと判断できるものは オ である。 600 I - 39 - と の解答群 (解答の順序は問わない。) ⑩ 1次活動のデータの値が最大である都道府県と, 2次活動のデータの 値が最大である都道府県は同じである。 OVE 081 ① 1次活動のデータの値が最大である都道府県と, 2次活動のデータの 値が最小である都道府県は同じである。 × 1次活動, 2次活動, 3次活動のうちで, データの範囲が最大である のは1次活動である。 ⑩ 1次活動, 2次活動, 3次活動のうちで,データの四分位範囲が最大 であるのは1次活動である。 ④ 1次活動, 2次活動,3次活動のうちで,どの都道府県も1次活動の データの値が最も大きい。 ⑤2次活動のデータにおいて,第1四分位数より小さい値と,第3四分 23 位数より大きい値をすべて削除すると、残りの値の個数は25個である。 ⑤ 次活動のデータにおいて、 第1四分位数より小さい値と、第3四分 位数より大きい値をすべて削除すると, 残りの値からなるデータの範囲 は,もとのデータの四分位範囲に等しい。 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

182.2 k≦log10 N<k+1なので「ゆえに...」の部分を丁寧に書くと、 38.905≦log10 6^50<39より、38<log10 6^50<39であり、38.905≦log10 6^50<39の部分を解答では省略しているのですか? (38.905≦log1... 続きを読む

N<k logN<- 示し る。 基本例題 182 常用対数を利用した桁数, 小数首位の判断 ①①①①① logio2=0.3010, log103=0.4771 とする。 (1) 10g105, 10g100.006, logio√/72 の値をそれぞれ求めよ。 (2) 650 は何桁の整数か。 る。 1 / 2 \100 3 (3) HHOTTOMNE 指針 (1) 10 で, 10g10 2, 10g103 の値が与えられているから,各対数の真数を2,3, 10の累 乗の積で表してみる。 なお, 10g105の5は5=10÷2 と考える。 (2),(3) まず, 10g106% 10g10 を求める。 別解 あり 解答編p.181 検討 参照。 解答 を小数で表すと, 小数第何位に初めて0でない数字が現れるか。 scusa 01 p. 284, 2 「正の数Nの整数部分が桁⇔k-1≦loguN <k 正の数Nは小数第位に初めて0でない数字が現れる⇔-k≦1010N 【CHART 桁数,小数首位の問題 常用対数をとる 10 log. (1) 10g105=10g10=10g1010-logio2=1-0.3010=0.6990 logad = 10g100.006=10gio (2・3・10-3)=10g102+ 10g103-310g1010 = 0.3010+0.4771-3=-2.2219 ******** ゆえに logiu√72=10g10(23.32) 11 (310g102+210g103) 2 TOOTH ( 3×0.3010+2×0.4771) = 0.9286 (2)10g106505010g106=5010g10 (2・3)=50(10g102+10g103) 練習 ② 182 2\100 3 =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10650 <39 よって 1038 <650 <1039 したがって, 650 は 39 桁の整数である。 (3) logi()100- =100(10g102-10g103)=100(0.3010-0.4771) 3 =-17.61 -18 <10g10 10-18< 100 2 <-17 <-k+1 3388520T AT 383 ROKS <10-17 10g1010=1 [重要] 10g15=1-10g102 この変形はよく用いられる。 1√Ã= A ² 53.0 ならば, Nの整数部分は (k+1) 桁。 100 2 よって *< ( 1 ) ¹⁰° < ゆえに,小数第18位 に初めて 0 でない数字が現れる。100mgor (2) 10MN <10%+1 (3) 10 N10-k+1 ならば, Nは小数第位 に初めて0でない数字が現 れる 881 logı2=0.3010, logw3=0.4771とする。 15' は桁の整数であり, ( 2 3 ) 100 は小数第1 1位に初めて0でない数字が現れる。 p.294 EX118 章2 5章 32 常用対数

回答募集中 回答数: 0
数学 高校生

なぜ、b≦0とb>0で場合分けをするのですか? b<0とb>0ではだめなのですか? またb≦0だった場合、b>0のような場合分けの仕方はしないんですか?

107 2次関数の区間における最大・最小 74 [精調]] con 100 226 127 (D) を(0) 242/2alb(2P1) とおく。 区間15分 で場合分けをすることになります。 一方,650のときにはグラフは上における 放物線か直線になるので,次の事実を利用できます。 (一般にup(z)のグラフが区間:amzbにおいて、上に凸(ある。 は線分) であるとき, が成り立つ。 解答 uf(t) のグラフを考えましょう。 もりのときにはグラフは に凸な放物線ですから,軸と区間 -15E1の位置関係によっ TEBVC g(x)=0 "g(a)20 g(b)20" が成り立つ。また、1において下に凸(あるいは線分) であるとき, において g(x))"g(a)=0 かつg(b)≧0" f(t)=2+2√/2at+b(212-1) =2612+2√2at+2-b である。 ( b>0のとき において, "-1≦t≦1のすべてのに対して f(t)≧0である”.....( * ) ためのa,b の条件を tu 平面における u= f(t) ...... ① のグラフを利用して求める。 (i) b0 のとき b<0 のとき, ① は上に凸な放物線であり, b=0 のときは直線であるから, * 20 f(-1)≧0かつf(1) baya-2かつb≧2√2a-2 #est both とかでは ないのし F(t)=20(1+2)²-²+2-6 WA SH 1 bitt u=f(t) 95²

回答募集中 回答数: 0
数学 高校生

写真の問題の赤線部についてですが、なぜn≧1と書く必要があるのでしょうか? その上の行でΣとCをすでに使っていますが、ΣとCのnの部分は定義から、n≧1だから、赤線部の前にn≧1という条件はすでに考慮してるのではないのでしょうか?解説おねがいします。

基礎問 P 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して,2"> n を示せ. AOAO k-1 (2) 数列の和 S. = 2 (1) anで表せ△〇〇〇 k=1 (3) lim Sm を求めよ. △△△△ n→∞ |精講 (1) 考え方は2つあります。 I. (整数)” を整式につなげたいとき, 2項定理を考えます. PROCE (数学ⅡI・B4 ⅡI. 自然数に関する命題の証明は帰納法 (数学ⅡI・B 136 Fet (2) Σ計算では重要なタイプです. (数学ⅡB 120 S=Σ(kの1次式) k+c (r≠1) は S-S を計算します. (3) 極限が直接求めにくいとき, 「はさみうちの原理」という考え方を用います. bn≦an≦en のとき limb=limcn = α ならば liman=α n→ 00 n→∞ n→∞ この考え方を使う問題は,ほとんどの場合,設問の文章にある特徴がありま す. (ポイント) どういう意味? 解答 (1) (解I)(2項定理を使って示す方法) n (x+1)=2nCkck に x=1 を代入すると k=0 2"=nCo+nC1+nC2+..+nCn ¹) n=1 F²³5, 2²nCo+nC₁=1+n>newhere 2">n ( 解ⅡI) (数学的帰納法を使って示す方法 ) 2"> n (i) n=1のとき 左辺=2,右辺=1 だから, ①は成りたつ

回答募集中 回答数: 0