学年

教科

質問の種類

数学 高校生

(2)でf(x)の定義からf(x)=f(-x)となっているのが分からないので教えて頂きたいです。よろしくお願い致します。

12.0k 33 総合 1 <x<1 で定義された次の関数について、 以下の問いに答えよ。 f(x)= Cn n+ in = 1, 2,・・・・ 数学Ⅲ423 lc (x=0) (1) f(x)がx=0で連続のとき, 数列{cm} はどんな条件を満足するか。 (2) f'(0) が存在するとき, f' (0) の値を求めよ。 (3) f'(0) が存在すれば, 数列{n(Cn-c)}は収束することを示せ。 (1) f(x) は x=0で連続であるから n+1 lim| x→0 limf(x)=f(0)=c x→0 ① -≦|x|<1の各辺の逆数をとって(笑) 1200n 1 n< Txn+1 1 ② すなわち --1=∞ であるから, x→0のとき limf(x)=limcn lim cn=c [ 東京工大) 本冊 例題 91,127 ←x=af(x) が連続 ⇔limf(x)=f(a) xa -1≦x< 不等号の向きに注意。 Tx --(001)-(0) n→∞ Oale (200) (18) 2008 x ゆえに x→0 よって, ① から 818 (2) f(x)の定義から f(x)=f(x) ゆえに f'(0)=lim f(x)-f(0) =lim f(x)-f() } x0 x x→0 -x =-f'(0) ←|-x|=|x| ←微分係数の定義式 総合 f(x)-f(0) の分母分 X 子に-1を掛けてf(x) よって 2f'(0) =0 すなわち f'(0) = 0 (3) f'(0) が存在するとき, (2) から f'(0)=lim f(x)-f(0)=0 ...... ③ x→0 x f(-x) におき換える。 ここで, (1) ②の不等式から ann|f(x)-f(0)|≤. f(x)-f(0) |x| ゆえに n\c-c|f(x)=f(0)| n\cn−c|≤ |f(x)—ƒ(0)| xS)x=(x);\((x)=(x)x-(x)T (n+1)f(x)-f(0)| ·≤(n+1)| cn-c\.. |x| +28-1x8 xSI) (I- GUNT CL -5 ←不等式の等号は f(x)=f(0) のときに成 (4 り立つ。 \f(x)-f(0)|≦(n+1)|cn-c|から |x| |f(x)=f(0)|≤n\C-c\ n n+1 これと④の左の不等式から |f(x)—f(0) 1/(x)-(0)|snlc-cls|1(x)-100)| ここで, n→∞ とすると, x→0であるから, ③より ←両辺に n を掛ける。 [n+1 ← n+1 -≦|x|<1 n | f(x)=ƒ(0) lim -f(0)|=|S(0)1=0 x10 limn|cn-c|=0 よって n→∞ したがって、数列{n(cm-c)}は0に収束する。 ←はさみうちの原理。

解決済み 回答数: 1
数学 高校生

19の(2)の問題です。 黄色の丸のところなのですが、どうして分子が3(2^n− 1− 1)ではないのでしょうか?

320 数学B = 12 n(n+1)²(n+2) [別解 求める和をSとすると S=12+(12+22)+ (12+2+32) ++ (12+22 + = Σ (1² + 2ª² + -......-+ k²) = Σk(k+1)(2k+1) k=1 16 = (2k³+3k² + k) = (2 k³ +3 k² +Źk) 6k=1 k=1 -1/12 1/12 n(n+1) +3.1/n(n+1)(2n+1)+ •+n²) n+1)(2n+1)+n(n+1)] 1n(n+1){n(n+1)+(2n+1)+1} [参考] 和は (2) で表すこともできる。 an=a+ n-1 Σ3-2-1=1+ k=1 3(2-1-1) 12+12+12++12 2-1 2+2+......+22 32+... +32 成り立つ。 +) ゆえに,一般項は an=3.2"-1_9 また, 初項 α=1 であるから,上の式は n=1のときにも公比2項数n-1の等 =3.2-1-2 第1章 数列 321 1章 比数列の和。 PR k=1 はこれを縦の列ご とに加えたもの。 よって Sn= (3.2-1-2)= och k=1 3(2-1) 2-1 初項は特別扱い。 -2n =3.2"-2n-3 PR (1) Sn=2n2+n (2) Sn=5"-1 ②20 (1) n≧2 のとき 初項から第n項までの和Sが次の関係式を満たすような数列{an} の一般項am を求めよ。 (3) Sn=3n2-2n+1 PR ②19 次の数列の第n項を求めよ。 また, 初項から第n項までの和を求めよ。 (2)1, 4, 10, 22, 46, (1) 1, 7, 17, 31, 49, an=S-S-1=(2n²+n)-{2(n-1)2+(n-1)} =(2m²+n)-(2m²-3n+1)=4n-1 また, n=1のとき HINT n≧2, n=1の 場合に分けて考える。 =Sに着目。 35,4 a=Si=2.12+1=3 し 与えられた数列の一般項をanとし, 初項から第n項までの和 をSとする。 [HINT ゆえに an=4n-1 よって, an=4n-1 は n=1のときにも成り立つ。 a=4.1-1=3 また、数列{a}の階差数列を {bm} とする。 階差数列利用の注意 ① n≧2」 とする 2 αは特別扱い (2)n≧2 のとき an=Sn-Sm-1=(5"-1)-(5-1) n-l =(5-1)・5"'=4・5"-1 また, n=1のとき a=Si=5'-1=4 (1){6}:6,10, 14, 18, 1 7 17 31 49 これは,初項6, 公差 4の等差数列である。 よって, an=4・5-1 は n=1のときにも成り立つ。 a=4.5=4 n-l 差 : 6 10 14 18 ゆえに bn=6+(n-1)・4=4n+2 よって, n≧2 のとき n-1 ゆえに an=4.5-1 n≧2 を忘れない。 (3) n≧2 のとき So≠0の場合は, an が an=SnSn-1 1つの式で表せない。 n-1 an=a1+(4k+2) ← (n-1)n k=1 k=1 =1+4•- (n-1)n+2(n-1) =2n2-1 また, n=1のとき また,初項 α=1であるから, 上の式は n=1のときにも 成り立つ。 初項は特別扱い。 よって, an=6n-5 は n=1のときには成り立たない。 ゆえに α=2, n≧2のとき an=6n-5 <a₁=6-1-5=1 ゆえに,一般項は an-2n2-1 =(3m²-2n+1)-{3(n-1)2-2(n-1)+1} =(3m²-2n+1)-(3m²-8n+6) =6n-5 a=St=3・12-2・1+1=2 (本冊基本例題 20 の n INFORMATION 参照) よって S=(2-1)=22-21 k=1 k=1 k=1 =2.—n(n+1)(2n+1)—n = n(2n²+3n+1-3) =1/13n(n-1)(n+2) (2){bm}:3,6,12,24, PR 次の数列の初項から第n項までの和を求めよ。 ②21 2 k2 (1) 2 2 13'35' 5・7' 1 (2) 1・5'59' 9・13' k=1 =n(n+1)(2n+1) 1 4 10 22 46 (1) この数列の第k項は 2 (2k+1)-(2k-1) (2k-1)(2k+1) (2k-1)(2k+1) ゆえに、初項から第n項までの和は 2k-1 2k+1 ( 1 D) + ( 1 D) + ( 1 D) + + (2n-1 2n+1) (1)+(孝一)+(第一分)+ bn=3.27-1 これは,初項3,公比2の等比数列である。 ゆえに 差: 3 6 12 24 2n =1- よって, n≧2のとき n≧2 を忘れない。 2n+1 2n+1 途中の 111 3'5'7' が消える。 2n

解決済み 回答数: 1