学年

教科

質問の種類

数学 高校生

(1)のp(k)について、残りのk-2枚の色の決め方をもし3c3にしてしまうとどんな問題が起きますか?

10 確率の最大値 赤、青、黄3組のカードがある. 各組は10枚ずつで, それぞれ1から10までの番号がひとつず つ書かれている。この30枚のカードの中からん枚 (4≦k≦10) を取り出すとき 2枚だけが同じ番 号で残りの (k-2) 枚はすべて異なる番号が書かれている確率を(k) とする. (1) p(k+1) p(k) (4≦k≦) を求めよ. (2) p (k) (4≦k≦10) が最大となるkを求めよ. (福岡教大/一部省略) 確率の最大値は隣どうしを比較 確率p (k) の中で最大の値(または最大値を与えるk)を求める 問題では,隣どうし[p(k)とp(k+1)] を比較して増加する[p(k)≦p(k+1)] ようなkの範囲を求 める.pkpk+1)の大小を比較すればよいのであるが, (k) p (k+1)は似た形をしているの p(k+1) p(k+1) で p(k) である. を計算すると約分されて式が簡単になることが多い。 p(k) 1p(ksp (k+1) ■解答量 R BE (48860) (1) 30枚からん枚 (4≦k≦10) を取り出す取り出し方は 30Ck通りあり、これ らは同様に確からしい。このうちで題意を満たすものは、 同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方が3C2通り、異なる番号 の(k-2)枚について番号の選び方が 9C-2通りでそれを1つ決めると色の選び 方が3-2通りある. 10-3-9Ck-2-3-2 10 10 10 目 ex① 1. C₁ パターン よって, p(k)=- 30Ck p(k+1)_gCk-13k-1 30Ck p(k) 三 30Ck+1 9Ck-2-3k-2 10.3を約分 (k+1)! (29-k)! 30! 2/5+1)(11-b) 30! 9! k! (30-k)! (k-1)! (10-k)! (k-2)! (11-k)! 9! --3 順に, 30 Ch. 9Ch-1. 30 Ch+1 9Ch-2 最後の3は3-13-2 を約分. X

解決済み 回答数: 1
数学 高校生

軌跡の問題で、(a,b)=(q-1,p+1)が成り立つ理由が分からないです教えてください🙏

02 第3章 図形と方程式 例題 104 対称な直線 角の二等分線 **** (1) 直線 x-y+1=0 ……① に関して, 直線 x +3y -70......② Pと対称な直線の方程式を求めよ. P をと 100 ... (2)2直線x-3y+1=0 D, 3x-y-50... ② のなす角の 二等分線の方程式を求めよ. 考え方 (1) 直線①に関して,直線②と対称な直線とは右の図の直 線 ③であり,直線 ③上の任意の点Pの直線 ①に関し て対称な点は直線 ②上にある . そこで,直線②上の任意の点をA(a,b) とし,直線 ①に関して点Aと対称な点をP(p, g) とする. 点A (2)が直線 ②上を動くとき、点Pの動く図形が求める直線+ になるから、点Pの動く図形の式をpg を用いて表 PO (2) ③ x (10 このとき,求めたい直線上の点はP(p,q) であること から.. q だけの式で表したいので,条件をうまく 用いて, a, b の文字を消去していく. 式 2+ (2) 右の図のように, XOYの二等分線上の点P は, OX, OY から等距離にある. 秘密ます。 Y そこで,求める直線上の点をP(p, g) とすると,この 点から与えられた直線 ①②との距離が等しいことか ら点Pの動く図形の式をpg を用いて表す. -X (0) このとき、右の図のように、 求める直線は2本になる ことに注意する. B 1-4-= 作れない 上の2)-(1-x)-= 10.0 0>1-1- 求める 中 上の点を(水) とお 101-101 0101 (y)として表 ただし 注意 ①スキューニ酵 分

解決済み 回答数: 1