学年

教科

質問の種類

数学 高校生

赤の線になる理由を教えてください

例題 10 関数とその逆関数のグラフの共有点 思考プロセス f(x) = √x+1 とするとき, y=f(x)とy=f(x)のグラフの共 のx座標を求めよ。 « ReAction y=f(x) の逆関数は、値域を求めてxについて解け 条件の言い換え まず, f(x)と 例題9 y=f(x) とy=f-1 (x) の グラフの共有点のx座標 方程式 f(x) =f-1(x) の 実数解 ← xの値の範囲を 求める。 (別解) 見方を変える y=f(x) とy=f-l(x) のグラフは直線 y=x に関して対称 直線 y=x上にある共有点はf(x)=xの実数解 y=√x+1 ... ① の定義域はx≧-1 まず逆関数f(x)を める。 であり, 値域は y≥ 0 6 y=f(x) ①の両辺を2乗すると y2=x+1 9 xについて解くと x=y2-18- 1 -1 0 x xとyを入れかえると, ① の逆関数 は y=f-l(x)=x-1 -1 y=f¹(x) ② その定義域は x≧0 PB 1 ①と②を連立すると √x +1 = x2-1 2/2 ・③ このとき,x2-10 より x≦-1, 1≦x …④ √f(x)=g(x) ③ の両辺を2乗すると x+1 = (x²-1)² ⇔f(x)=1g(1 x4-2x2-x=0 となり xについて解くと x = -1, 0, x(x+1)(x2-x-1)=0 1±√5 かつ gx p. 25 Play Back 1 参 2 y = f(x) と y=f-l(x)の定義域および ④ より 1≦x (別解) よって、 求める共有点のx座標は 1+√5 X= 2 y=f(x) と y=f'(x) のグラフ は直線 y= x に関して対称であ りこれらのグラフの共有点は,右 の図より直線 y=x上のみにあ る。よって, 共有点のx座標は √x+1=x(x>0) y=f(x) 0 2 -1 | y=f¹(x) 1+√5x 両辺を2乗すると x + 1 = x2 すなわちx-x-1=0 x>0より 1+√5 x= 2 グラフから,明らか |共有点が直線 y=x のみ存在するときは、 |線y = √x+Iと y=xの交点を求めて い ただし、一般に共有 直線 y=x上にしかな とは限らない。 y=√-x+14y 10f(x)=√x+6とする! info.tan. y=

解決済み 回答数: 1
数学 高校生

どなたか答え合わせお願いします🙇‍♀️🙏💦

Ⅰ. 次の太字の英単語に最も近い意味を持つものを,a~d. の中から1つ選びなさい。 解答 は解答用紙1枚目 (マークシート方式) の所定の解答欄にマークしなさい。 (1) opportunity a. charge b. choice chance d. check (3) criterion a standard b. criticism c. agreement d. sequence (5) compensation a. money given or received as payment for a loss b. mathematical statement showing equal parts c. event where people celebrate d. advantage given to only certain people (7) registration a act of recording information b. idea that leads to further discussion c. strong like or appreciation for another d. one part of a larger component (9) distribute a. derive from an original source b. make available to see c. hand out or deliver something d. be different from others (2) reject a. make illegal refuse to accept c. express support d. give an order (4) application formal request a 6. changed behavior official record d. expression of ideas (6) intervention a. event which results in the police arriving b. having the freedom to make decisions c. distance from front to back d. act of coming between groups in a dispute (8) density a. affection for someone or something X. need for food C degree to which an area is filled or covered d. state of ownership (10) circumstance a. outcome of an event b. addition that makes something better c. feeling or action in response to something d. condition or fact that affects a situation

解決済み 回答数: 3
数学 高校生

答え合わせお願いします🙇‍♀️🙏💦

Ⅱ. 次の英文の空欄 ( 11 ) から ( 20 )に入る最も適切な英単語を, a. ~d.の中から 1つ選びなさい。 解答は解答用紙1枚目 (マークシート方式)の所定の解答欄にマークし なさい。 2893 000 Lego bricks. (Image source: Wikimedia Commons-CC license) Car made from Lego bricks. Lego has unveiled its first bricks made from recycled plastic bottles and ( 11 ) that it hopes to include the pieces in sets within two years. The prototype 4x2 bricks have been made from PET plastic from ( 12 ) bottles with additives to give them the strength of standard Lego parts, and are the result of three years of ( 13 ) with 250 variations of materials. It has already ( 14 ) plans to remove single-use plastic from boxes, and since 2018 has been ( 15 ) parts from bio-polyethylene (bio-PE), made from sustainably sourced sugarcane. These parts are bendy pieces, such as trees, leaves and accessories for figurines. Tim Brooks, vice-president for environmental ( 16 ) at Lego Group, said the biggest challenge was "rethinking and innovating new materials that are as ( 17 ), strong and high (18) as our existing bricks and fit with Lego elements made over the past 60 years". He added: "We're committed to playing our part in building a sustainable future for generations of children. We want our products to have a positive ( 19 ) on the planet, not just with the play they inspire, but also with the materials we use. We still have a long 20 ) we are making." way to go on our journey, but are pleased with the Hillary Osborne, "Lego develops first bricks made from recycled plastic bottles", The Guardian, 23 June, 2021. (https://www.theguardian.com/lifeandstyle/2021/jun/23/lego- develops-first-bricks-made-of-recycled-plastic-bottles) (-)

解決済み 回答数: 1
数学 高校生

英作文なんですけど、添削をお願いしたいです🙌🏻学校の先生にしてもらう時間がなくて明日テストなんです!お願いします🙇🏻‍♀️💭(字汚くてすいません)

次のTopic について、自分の意見とその理由を50 語程度の英文で書きなさい。 Topic :If you had an "Anywhere Door", where would you go? Topic 2: If you could travel in a time machine, when would you go to? Topic 3: Do you think more people will have pets in the future? 55 ☺ If I could travel in a time machine, I want to go to Heian Period. I have two reasons. First. I can watch Helankya. Sei Shenagon and Murasaki Shikibu. I like their essay. so I want to talk with them. For this reason. I want to go to Helan Period 54歳 0 If I had an Second. I want to meet "Anywhere Door", I want to go to Shizuoka. I have two reasons. First I want to eat Local gourment food like Fuzimiya-yakicabo, Second I want to watch the volley match of Hamamatushugakusha high school. But I haven't enough many to ge So I want to go to Shizuoka with anywhere door. ☺ I think more people will have pets in the future. It's because having And having pets make children's pets is good for education. emotions enriching. Also, pet helps relieve children's loneliness. So I think more people will have pete in the future Check! □自分の意見や考えを最初に述べているか。 □その理由を述べているか 理由に対する具体的な事例・事実を述べているか ( つなぎ言葉を効果的に使っているか。 □単語・文法の誤りはないか。 ) words

解決済み 回答数: 1
数学 高校生

問6のl=1のところが理解できません なぜ0にはならないのですか?

62023年度 数学 第4問 (100点) 2つのレポートの異なる度合い (非類似度)を数値化することは, レポートの独創性を の単語の集合をU={W,W2,...,W9} とする。 レポートAに, Uに属する単語が含まれる 評価するために重要である。 レポートのテーマに関する異なる9個の単語を選び,それら と表す。 同様に、レポートB についても調べたところ, 単語の集合 B が A∩B={ws}, かどうかを調べたところ, W2, W3, W's が含まれていた。 このとき, 単語の集合Aを A={w2,W3,Ws} AUB = {W1, W4,Wg} を満たしたとする。 次の問いに答えよ。 ANB 問1 集合 B を求めよ。 問2 集合Aの部分集合をすべて求めよ。 問3 集合ひの部分集合の個数を求めよ。 140*3 & ROTER) ( 問4 集合ひの部分集合X,Y について,集合 z=(XP)(1) の要素の個数n(Z) , n(X), n(Y), n() を用いて表せ。 ここで,Uの部分集合 X,Y に対して、XとYの非類似度d(X,Y) を次の式で定義する。 ((x)(x))) > n(A)th(B) - 2n (AMB) d(X,Y)= n(XUY) →n(A)+(B)-n(AB) 問5 集合 A, B に対して, AとBの非類似度d(A,B) を計算せよ。 NAKON ENCH 18-0 (0) E E-f(xgol)x= (22 E25023 問6 C,DをUの部分集合とする。 n(C)=4, n(D)=6のとき,CとDの非類似度 d(C,D) がとりうる値の最大値と最小値を求めよ。

解決済み 回答数: 1