学年

教科

質問の種類

数学 高校生

数学2B 軌跡の問題です。 (3)で “ここで⑤よりX=-2+2/1+a^2” とありますが、なぜそうなるのでしょうか?💦

例題 114 軌跡 〔8〕・・・ 線分の中点の軌跡 (2)・・・(札 円 x2 +y2 = 1 ・・・ ① と直線 αax-y+2a=0 ・・・ ② について (2) αが (1) で求めた範囲で動くとき, その2交点を結ぶ線分の中点の座 (1)円 ①と直線 ② が異なる2点で交わるとき, αの値の範囲を求めよ。 をαを用いて表せ。 (3)(2)の中点の軌跡を求めよ。 (1) ①と直線 ② が異なる2点で交わる ① ② を連立した2次方程式 (*) の判別式DがD> 0 ①の中心と直線②の距離) (①の半径) どちらで考えるか? (2)素直に考えると・・・ X = 中点(X, aX-Y- したがっ ゆえに, (3)5 X=- よって ↑計算が繁雑 ⑥ の y 2次方程式(*)から2交点の座標を実際に求めて考える。 求めるものの言い換え 思考プロセス 2次方程式(*)の2解をα, βとする 解と係数の関係 中点のx座標 a+β 2 《ReAction 線分の中点の軌跡は,解と係数の関係を利用せよ 解 (1) ①,②より,yを消去して整理すると ⑦を Y2 = 0 よっ a a+β. ここ 2 ④よ 例題113) 軌跡 4 D>0より 3 ・④ であるから √3 例題 (1 + α²)x2 + 4ax + 4a² -1 = 0 ... ③ 94 ① ② は異なる2点で交わるから, ③の判別式をDと すると D > 0 D == (2a²)² - (1+ a²)(4a²-1) = −3a²+1 -3a²+1>0-6 円 ①の中心と直線 ② の 距離を d,円 ① の半径を r として,d<r から求 めることもできるが、(2) で交点の座標を考えるか ら,③を考える。 Play Back 8 参照 √3 Point (1) ② <a< 例題 130 (2) αが(1)で求めた範囲を動くと き,円 ①と直線②の2交点の x座標は,xの2次方程式 ③の 2つの実数解である。 3 3 1 <0 + (3 (2 (X, Y) 1 より ** ④ これらをα, β とすると,解と 係数の関係より (1) a<± としないよう -2-1a O B a+B= 4a² 1+ a2 とすると よって,円 ①と直線 ② の2交点の中点の座標を (X, Y) la+B= b a に注意する。 ■2次方程式 lax+bx+c=0の2つ の解をα,Bとすると 練習 11 198 laβ=

解決済み 回答数: 1
数学 高校生

赤の線になる理由を教えてください

例題 10 関数とその逆関数のグラフの共有点 思考プロセス f(x) = √x+1 とするとき, y=f(x)とy=f(x)のグラフの共 のx座標を求めよ。 « ReAction y=f(x) の逆関数は、値域を求めてxについて解け 条件の言い換え まず, f(x)と 例題9 y=f(x) とy=f-1 (x) の グラフの共有点のx座標 方程式 f(x) =f-1(x) の 実数解 ← xの値の範囲を 求める。 (別解) 見方を変える y=f(x) とy=f-l(x) のグラフは直線 y=x に関して対称 直線 y=x上にある共有点はf(x)=xの実数解 y=√x+1 ... ① の定義域はx≧-1 まず逆関数f(x)を める。 であり, 値域は y≥ 0 6 y=f(x) ①の両辺を2乗すると y2=x+1 9 xについて解くと x=y2-18- 1 -1 0 x xとyを入れかえると, ① の逆関数 は y=f-l(x)=x-1 -1 y=f¹(x) ② その定義域は x≧0 PB 1 ①と②を連立すると √x +1 = x2-1 2/2 ・③ このとき,x2-10 より x≦-1, 1≦x …④ √f(x)=g(x) ③ の両辺を2乗すると x+1 = (x²-1)² ⇔f(x)=1g(1 x4-2x2-x=0 となり xについて解くと x = -1, 0, x(x+1)(x2-x-1)=0 1±√5 かつ gx p. 25 Play Back 1 参 2 y = f(x) と y=f-l(x)の定義域および ④ より 1≦x (別解) よって、 求める共有点のx座標は 1+√5 X= 2 y=f(x) と y=f'(x) のグラフ は直線 y= x に関して対称であ りこれらのグラフの共有点は,右 の図より直線 y=x上のみにあ る。よって, 共有点のx座標は √x+1=x(x>0) y=f(x) 0 2 -1 | y=f¹(x) 1+√5x 両辺を2乗すると x + 1 = x2 すなわちx-x-1=0 x>0より 1+√5 x= 2 グラフから,明らか |共有点が直線 y=x のみ存在するときは、 |線y = √x+Iと y=xの交点を求めて い ただし、一般に共有 直線 y=x上にしかな とは限らない。 y=√-x+14y 10f(x)=√x+6とする! info.tan. y=

解決済み 回答数: 1