学年

教科

質問の種類

数学 高校生

紫の部分の式はどうやって求めたかが分かりません。公式なのか条件なのか教えて頂けると嬉しいです🙏🏻

全国統一高校生テスト 6月 全学年統一部門 数学 II BC 自己 第2回 第4 数列 第4 出題のねらい からまでのS の で与えられたときの を求められるか、 (2)+(-1)+26 +1がの で与えられたとき を求められ (2) るか。 解説 とより。 -SS (-0 が成り立つ。 であるとすると ウエ --12-1- である。また、のとき、 a-So-Sa -(+2)-(-11+26-11 +2-(-2x+1+2x-2) -21- であるから、②のときも成り立つ。 したがって、一般は2+1である。 について -5-2 2のとき。 a-S-S (2010-10-011 2x-1 であり、2*2-1-1 であるから、 1つの 式で表せない。 ⑩について Q-5-2 2のとき a-S-S -3-1-0-1 -2-3 であり、2-2-3であるから、 1つの武 ②について =S=1 のとき a-S-Sp ww-1) であり、この人は1のと なわち、一般は1つの できない。す せない 以上より、一般が1つの式で表せるものは、 である。 -- (22) 1つの せるということは、下の式に を代入したものと上の式が一致する場合 すなわち、 S-0 が成り立つ場合である。 Tab+(x-DA+ (-1,2,3-) Tail(r-DA+( ++1% +++1-s であるから、 T-T -[-(-1)+(-1)-(-2 +1(x-2-(-301 +0-238-2 ロー+1 ++ 7.='+3+1であるとする。 と T-T (x+3 +1-10-13'30-1+1] x'+3+1) (x-3e'+3m-1+3-3+1) -(x²+3x+1)-(+63) であるから、より 4-3-344- が成り立つ。これより A-X-1-3-1+4 =34-6x+3-3 +3+4 -3-9+10 であるから、3のとき、 --+--+100 である。 ここで より であるから、 A-1'+3・1+1-5 あるから、 キーケ ++ 2h+b=2+3−2+1=8+6+1=15 2-5+4-15 あ よって、家は、 二人のときのときも成り立たない。 アドバイス 数列の和と一般 る。 la.) からまでのをSとす このとき、 a.-S.-S. — ここでは定義されないから、 のときは ①が成り立つとはいえない。 が与えられて数 laを求めるときから求めることは できない。 から求められる。) ①が成り立つ しょ このことをきちんとできているか見る 問題である。 (2)で間違えた人は、成り立つ 注意 しよう。 表 自己探 第2 第5 第6 第7月 ▲上に戻る

未解決 回答数: 1
数学 高校生

例題74.2 恒等式という記述がないですがこれでも問題ないですよね? (3枚目を確認してほしいです。2枚目はそこまでの導入も一応載せただけであり、おそらく記述に問題はありません。)

よ。 本 65 基本例 74 第2次導関数と等式 1) y = log(1+cosx) のとき,等式 y"+2eY =0 を証明せよ。 131 00000 自 (2)y=exsinx に対して, y”=ay+by' となるような実数の定数a,bの値を求 めよ。 [(1) 信州大, (2) 駒澤大]基本 73 指針第2次関数y”を求めるには、まず導関数を求める。また,(1),(2)の等式はとも にの恒等式である。 (1)y" を求めて証明したい式の左辺に代入する。 またe-xで表すには,等式 elogppを利用する。 (2)y', y” を求めて与式に代入し, 数値代入法を用いる。 なお, 係数比較法を利用す → ることもできる。 ・解答編 p.94 の検討 参照。 (1)y=2log(1+cosx) であるから 2sinx 1+cosx <logM = klogM なお, -1≦cosx≦1と (真数) > 0 から _ 2{cosx(1+cosx)=sinx(-sinx)} | 1+cosx>0 解答 y' =2• (1+cosx) こでは 1+cosx よって y"=- しょう x2+3), -12x)' x)', in 2x) (1+cosx) 2(1+cosx) _ _ _ 2 ( Nhật (1+cosx) [ == 1+cosx また, Y = log(1+cosx) であるからex=1+cosx 2 ゆえに 2e2 2 2 = y 1+cosx よって y"+2e-1/2=- 2 2 + =0 1+cosx 1+cosx x+cos2x=1 elogp=pを利用すると elog(1+cosx)=1+cosx 3章 1 高次導関数、関数のいろいろな表し方と導関数 ga), gay anx cos2y g(x)をxで ・もの。 v' (2) y=2e² sinx+ex cos x=e²x (2 sinx+cosx) y=2e(2sinx+cosx)+e (2cosx−sinx) =e2x(3sinx+4cosx) ...... ① ゆえにay+by=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y" =ay+by' に ① ② を代入して 2x (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} 4=b ③はxの恒等式であるから, x=0を代入して π を代入して また,x=2 これを解いて このとき って 3e"=e" (a+26) a=-5,6=4 (③の右辺) 4(e2)(2sinx+cosx) +ex(2sinx+cosx) 参考 (2) のy"=ay+by' のように、未知の関数の 導関数を含む等式を微分 方程式という(詳しくは p.353 参照)。 ③が恒等式 ③に x=0, を代入しても 成り立つ。 =e2x{(-5+2.4)sinx+4cosx)=(③の左辺) 逆の確認。 a=-5,b=4 [S][]

解決済み 回答数: 1