学年

教科

質問の種類

数学 高校生

113. 「自然数k,l」を「互いに素である自然数k,l」 としたのですが別に良いですか? また、最後「矛盾している」と書いていますが 同じことを2回書いているように思うのですが、 2回目の「矛盾している」には何の意味があるのですか?

基本例題113 互いに素に関する証明問題 (2) 00000 自然数a,bに対して, aとbが互いに素ならば, a + b と abは互いに素であるこ とを証明せよ。 091 5: 指針a+b と ab の最大公約数が1となることを直接示すのは糸口を見つけにくい。 そこで,背理法(間接証明法)を利用する。→a+b と ab が互いに素でない,すなわち a+b と ab はある素数を公約数にもつ,と仮定して矛盾を導く。 なお、次の素数の性質も利用する。 ただし,m,nは整数である。 mnが素数」の倍数であるとき, mまたはnはかの倍数である。 CHART 互いに素であることの証明 解答 a+b と ab が互いに素でない,すなわち a + b と ab はある素 数』を公約数にもつと仮定すると a+b=pk ①, ab=pl ...... p.4762 重要 114 ①1 最大公約数が1を導く 2 背理法 (間接証明法) の利用 ② , lは自然数) to と表される。 ② から, a または6の倍数である。 aがpの倍数であるとき, a=pmとなる自然数mがある。 このとき、①から6=pk-a=pk-pm=p(k-m) となり, bもpの倍数である。 これはαとが互いに素であることに矛盾している。 bがpの倍数であるときも、同様にしてαはかの倍数であり, aとbが互いに素であることに矛盾する。 したがって, a +6 と ab は互いに素である。 [番号] 前ページの基本例題 112 (2) の結果 「連続する2つの自然数は互いに素である」は、整数 この問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 各自=2や 3 などの場合で,このことを検証してみるとよい。 n₁ mとnが互いに素でない ⇔mとnが素数を公約 数にもつ k-mは整数。 TRAF a=pk-b 問題 素数は無限個あることを証明せよ。 [証明] n を2以上の自然数とする。 と+1は互いに素であるから, n2 =n(n+1) は異な る素因数を2個以上もつ。 同様にして。 ns=n(n+1)=n(n+1)(n2+1) は異なる素因数を3個以上もつ。 この操作は無限に続けることができるから、素数は無限個存在する。 =p(k-m') ( m' は整数) 素数が無限個あることの証明は,ユークリッドが発見した背理法を利用する方法が有名である け 21世紀に入って (2006年), サイダックによって提示された, とても簡潔な方 a)(w) P 481 4章 17 約数と倍数、最大公約数と最小公倍数

未解決 回答数: 1
数学 高校生

113. mとnが互いに素でないことを言い換えると mとnが素数を公約数にもつ となるのはなぜですか? 例えばm=20,n=4のときm,nは互いに素でなく、 公約数は4で素数ではないですよね?

基本例題 113 互いに素に関する証明問題 (2) 00000 自然数 α, bに対して, aとbが互いに素ならば, a+babは互いに素であるこ とを証明せよ。 p.476 基本事項 [②] 重要 114 指針a+b と ab の最大公約数が1となることを直接示すのは糸口を見つけにくい。 そこで,背理法(間接証明法)を利用する。 →a+b と ab が互いに素でない,すなわち a+b と ab はある素数』を公約数にもつ,と仮定して矛盾を導く。 なお,次の素数の性質も利用する。 ただし, m, nは整数である。 mnが素数」の倍数であるとき, mまたはn はかの倍数である。 CHART 互いに素であることの証明 ① 最大公約数が1を導く ② 背理法 (間接証明法) の利用 解答 a+b と ab が互いに素でない, すなわちa+b ab ある素 数』を公約数にもつと仮定すると ② (k, lは自然数) a+b=pk...・・・ ①, ab=pl と表される。 ② から, a または6の倍数である。 aがpの倍数であるとき, a=pm となる自然数mがある。 このとき, ①から6=pk-a=pk-pm=p(k-m) となり, ももかの倍数である。 これはaとbが互いに素であることに矛盾している。 bがpの倍数であるときも、同様にしてαはpの倍数であり, aとbが互いに素であることに矛盾する。 したがって,a+b と αb は互いに素である。 mとnが互いに素でない ⇒ m nが素数を公約 数にもつ <k-mは整数。 <a=pk-b =p(k-m') ( m'は整数) [参考] 前ページの基本例題112 (2) の結果 「連続する2つの自然数は互いに素である」 は, 整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 問題 素数は無限個あることを証明せよ。 [証明] を2以上の自然数とすると+1は互いに素であるから,(n+1) は異な 」 る素因数を2個以上もつ。 同様にして, n=n(n+1)=n(n+1) (n2+1) は異なる素因数を3個以上もつ。 この操作は無限に続けることができるから, 素数は無限個存在する。 ※各自=2や=3などの場合で,このことを検証してみるとよい。 素数が無限個あることの証明は, ユークリッドが発見した背理法を利用する方法が有名である が、上の証明は、21世紀に入って (2006年), サイダックによって提示された, とても簡潔な方 法で 481 4章 17 約数と倍数、最大公約数と最小公倍数

未解決 回答数: 0
数学 高校生

(1)の(ウ)の問題の解説で 黄色いライン部分の180°はなぜ消えたのですか?

256 基本例題 158 和と積の公式 (1) 積→和,和→積の公式を用いて,次の値を求めよ。 (1) sin 75°+sin 15° (7) sin 75° cos 15° (2) △ABCにおいて,次の等式が成り立つことを証明せよ。 B C COS COS 2 A-AL 指針 解答 (1) (7) sin 75° cos 15° = (2) △ABC の問題には, A+B+C=² (内角の和は180℃) の条件がかくれている。 A+B+C=元から、最初にCを消去して考える。 そして、左辺の sin A+ sin B に 和 = sin A+sin B+sin C=4 cos- (1) sin 75°+sin 15°=2 sin- = 1 1 =1/(1/2/20 +cos 20° cos 80°= cos 80 よって cos cos 80° + 15/12/20 cos 80°+ 1 2 1 -(sin 90°+sin 60°) 2 -{sin (75° +15°)+sin(75° -15°)} 2 積の公式を適用。 2 1 () cos 20° cos 40° cos 80°= ={cos 60° +cos(-20°)}cos 80° 2 2 75°+15° 75°-15° 2 COS 2 & few eco +302 =2 sin 45°cos 30°=2. ATTE SY - cos 80° + = 1 -{cos 100° +cos(-60°)}= sin A+sin B+sin C=2 sin- 1/(1+2)=2+1/3 1 (7) cos 20° cos 40° cos 80 2 2 1+1=4 cos C 2) mi p.255 基本事項 1, 2 重要 167 cos 20° cos 80° 1 4 cos 80° + cos 100° + 4 cos(180-80°)+cos 80°- = √√3√6 (8+0202 A+B =2sin- 2 229 230 (2) A+B+C=²5 С= π-(A+B) Peop+(a+b)800 ゆえに sin C=sin(A+B), cos= cos(7_A+B) = s =sin- 2 A+B A-B 2 2 COS COS -cos 4 A 2 2 COS cos 80° + 2+√3 A = 2cas-20064/cos(-2) =2 A-B 2 B C 1/2 cos/20 COS 4 練習 (1) 積和,和→積の公式を用いて,次の値を求めよ。 158 (P) +sin 2. +cos 1 1 8 8 B - A+B 2 A+B 2 A+B) 2 解答 145 7045050 2倍角, により の形 CH 与式大 ここ

解決済み 回答数: 1