学年

教科

質問の種類

数学 高校生

赤線部分の意味が分かりません🙇🏻‍♀️

重要 例題 57 独立な試行の確率の最大 423 00000 さいころを続けて100回投げるとき,1の目がちょうど回 (0≦k≦100) 出る確 率は 100Ck × 解答 6100 であり,この確率が最大になるのはk= のときである。 [慶応大] 基本49 かし,確率は負の値をとらないことと nCr= や階乗が多く出てくることから, 比 pk+1 (ア) 求める確率をDとする。 1の目が回出るとき,他の目が100回出る。 (イ)確率pk の最大値を直接求めることは難しい。 このようなときは,隣接する2項 k+1とかの大小を比較する。大小の比較をするときは,差をとることが多い。し n! r!(n-r)! を使うため、式の中に累乗 をとり、1との大小を比べるとよい。 þk pk Dk+11pk<D+1 (増加), pk pk+1 <1⇔pk>ph+1 (減少) CHART 確率の大小比較 Et pk+1 をとり、1との大小を比べる pk さいころを100回投げるとき, 1の目がちょうど回出る 確率を とすると 6 Dk = 100 Ck ( 11 ) * ( 5 ) 100 * = 100 Cr× 75100-k 6100 pk+1 100!.599-k ここで × pk (k+1)!(99-k)! k!(100-k)! 100!-5100-k 出 k! (100-k)(99-k)! 599-k 100-k (k+1)k! 5.59-5(k+1) (99-k)! Dk+1 > 1 とすると >1 pk 5(k+1) 両辺に 5(k+1) [0] を掛けて100k5(k+1) 10月 「反復試行の確率。 pk+1=100C(+) X 5100-k+1) 6100 ・・・の代わりに +1とおく。 2章 独立な試行・反復試行の確率 95 これを解くと k<- =15.8··· 6 よって, 0≦k≦15のとき Pr<Pk+1 は 0100 を満たす 整数である。 Dk+1 <1 とすると 100-k<5(k+1) pk pkの大きさを棒で表すと 95 これを解いて k> -=15.8・・・ 最大 (C) 増加 減少 よって, 16のとき pk> Pk+1 したがって po<かく...... <か15<16, P16> D17>>P100 2012 よって, Dr が最大になるのはk=16のときである。 15 17 16 100/ 99

回答募集中 回答数: 0
数学 高校生

誰か分かる方(2)について詳しく解説お願いします 🙇 写真下に解説がありますが、それを読んでもよくわかりません💦

104 第2章 2次関数 例題 44 最小値の最大・最小 **** x の関数 f(x)=x2+3x+mのm≦x≦m+2 における最小値をgと おく. 次の問いに答えよ. ただし, m は実数の定数とする. (2) (1)最小値g をmを用いて表せ.dotup. (岐阜大・改) (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 43 と同様に考える.軸が定義域に含まれるかどうかで場合分けする。 (2) (1)より,mの値を1つ決めると,g の値がただ1つ決まる. よって,(1)で求めた mの関数とみなし、グラフをかいて考える (1)/(x)=x'+x+m=(x+2)+m-2 小豆 解答 グラフは下に凸で, 軸は直線 x=- 2 $301> 3 (i) m+2<-- 3のとき 2 e+ 小 場合分けのポイント 3は例題 43 (1) と同様 つまり,<-1のとき 20001 目はグラフは右の図のようになる。最小最大 したがって, 最小値 g=m²+8m+10(x=m+2) mm+2 3 3 (ii) m≤- ≦m+2のとき x= 2 2 7 つまり、12sms/2/2のとき 3 が区内 軸が区より左側 +2 0. グラフは右の図のようになる. したがって, 最小値 最小 432 m m+2 Stalton 9 (s=x) ex g=m-4 x=- 2 x=- 32 から、 (8=x) 8 (- 3 (iii) m>- のとき 2 グラフは右の図のようになる。 したがって, 最小値 g=m²+4m (x=m) (2)(1)より,gをmの関数とす ると,グラフは右の図のよう になる. 72- 32 のとき、 -4 TT よって, gの最小値は, " (i) -6(m=-4 のとき) | 最小 mm+2 Sp>I (vi) 94 (iii) m軸,g軸となる。 とに注意する. (m) 大量 15 64 最小 (ii) 23

回答募集中 回答数: 0
数学 高校生

解説お願い致します🙇‍♀️🙇‍♀️

(税抜) =2回+ +35の値 +7)(京都) 2章平方根 みかさんは大小2匹の犬を飼っています。 みかさんとお兄さんは、2匹の犬のため に2つの犬小屋をつくることにし、次のような犬小屋づくりのプランを考えました。 正方形の形をした庭に,2つの犬小屋 A,Bを下の図のようにつくる。 ・犬小屋は2つとも正方形の形にし, それぞれの面積を2m,8mとする。 ・正方形の庭の犬小屋以外の部分は、2匹の犬がいっしょに遊べるスペースにする。 遊べるスペース 2つの犬小屋の1辺の長 |小屋 B さの和が 正方形の庭 の1辺の長さになるよ。 小屋 A 8m² 2m² 式の計算 3億 2次方程式 2章 平方根 るとき, (1) みかさんとお兄さんは, 遊べるスペースの面積がどれくらいになるか知るために, まず 正方形の庭の面積を求めることにしました。 ① みかさんは次のように考えました。 遊べるスペース の値を (鹿児島) 「正方形の庭は, 2m² の正方形9個分になるから, 正方形 庭の面積は,2×9=18(m²) になる。」 小B 2. 18m² 下線部の考えがわかるように, 右の図に線をかき入れなさい。 小屋A 2m² お兄さんは,正方形の1辺の長さから考えました。 次のお兄さんの考えの あてはまるものを書き入れ, 続きを書いて完成させなさい。 に (三重) つにな お兄さんの考え:2mの正方形の1辺の長さは6.2m, また,8mの正方形の1辺の長さは3225m だから [^2+22=3.2 正方形の庭の面積は 32×4) すると になるから 204128:208 したがって正方形の庭の面積は、(3)^2=18m² (2) 正方形の庭の面積をもとに,遊べるスペースの面積を求めなさい。 小さい正方形に分けても、計算で 求めても、同じ結果になるね! 18-(2+8) =18-10 8 m 3年 教 4

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0