数学 高校生 1日前 階差数列の一般校を求めるやつです。 Σの計算ができません。 途中式も書いていただきたいです。 A 236 次の数列{an} の一般項を求めよ。 *(1) 2, 3, 5,78,412. *(3)3,4,8,17, 33, ...... 4 24816 (2) 5, 7, 11, 19, 35, (4)1, 6, 15, 28, 45, 591317 初項から第n項までの和 S, が次の式で表される州に 未解決 回答数: 2
数学 高校生 2日前 P,Qの位置関係がわかりません。図が欲しいです 次の問いに答えよ。 (1)点Qが放物線y=x2 上を動くとき, 点A(2, -2) と点Q を結ぶ線分AQ を 1:2 に内分する点Pの軌跡を求めよ。 ボ(2-2) y=21-2)+大 1+2 5=37-7 1+2 d=3844 GIATA 2 y=3x-8×14上にある 未解決 回答数: 1
数学 高校生 2日前 この問題について、tの変域って何を見て判断しているのでしょうか? 350 次の関数に最大値, 最小値があれば, それを求めよ。 (1) y=-2x+4x2 +1 (2) y=(x²-2x)+4(x²-2x)+5 未解決 回答数: 1
数学 高校生 2日前 見にくいですけど2枚目が答え&解説になってます! 何度読んでもわからないので解説お願い致します🙇♀️ (与) 1.7 実数a, b,cが a+b+c=2,a2+62 + c2 = 8, abc = -3 をみたすとき,次の値を求めなさい。 ab(a+b)+bc(b+ c) + ca(c+a) 400 未解決 回答数: 1
数学 高校生 2日前 なぜ0<a<2と2≤aで場合わけをしたのかがわかりませんでした。教えてください | 108 | 第3章 2次関数 解答 応用 例題 3 考え方 aは正の定数とする。次の関数の最小値を求めよ。 y=x2-4x+1(0≦x≦a) 前ページ応用例題2と違い, 定義域に文字αを含んでいるが,やはり αを数と同じように扱う。 y=x4x+1 のグラフをかいた後、定義端αがどこにある 考える必要がある。 αの位置によって放物線の軸と定義域の位置関 が変わるから,どこで最小値をとるかも変わる。 よって、その位置関係によって場合分けをする必要がある。 関数の式を変形すると [1] 0<a< 2 のとき y=(x-2)2-3 (0≦x≦a) 2:3 関数のグラフは図 [1] の実線部分である。 よって, yはx=αで最小値 α-4a+1 をとる。 [2] 2≦α のとき 関数のグラフは図 [2] の実線部分である。 よって, yはx=2で最小値-3をとる。 答 0<a<2のとき x=α で最小値 α-4a+1 2≦a のとき x=2で最小値 -3 [1] y a2-4a+1 -3| a 2 [2] O y (2-3) a²-4a+1 -3 2 a 未解決 回答数: 1
数学 高校生 2日前 数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです! 94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。 未解決 回答数: 1
数学 高校生 2日前 この解き方を教えて欲しいです。途中式も詳しくお願いします。答えは写真です。 け。 (2) |x-1|+2| x - 3|≤11 3x<x-4 x-1+2x-6=11 4x<-4 3x ≤ 18 x = 6 未解決 回答数: 2
数学 高校生 3日前 237の(2)です!よろしくお願いします! 質問は写真に掲載しているので読んでいただけると嬉しいです🙇♀️ 〔23 学習院大 ] 237×(1) <a<1 のとき,'3'2q2x を満たすxの範囲を求めよ。 〔11 甲南大〕 *(2)a>0, a≠1 のとき,xの不等式 10g(x+2)≧10g(3x+16)を解け。 238 (8) [日] 未解決 回答数: 1
数学 高校生 3日前 順列の問題です。3の倍数になるのって213や324もあると思うのですがこれらはも含めて計算されているのですか? 34個の数字1, 2, 3, 4から異なる3個を使って3桁の整数を作るとき,次の数は何個あ るか。 (1)3の倍数 (2)230より大きい数 解答 (1) 12 個 解説 (2)16個 (1)3の倍数になるのは,各位の数字の和が3の倍数になるときである。 1, 2, 34から異なる3つの数字を選ぶとき,その和が3の倍数になるのは 1 2 3 または 2, 3, 4 213, 324... の場合である。この3つの数を並べて3桁の整数を作ればよい。 よって、 求める個数は 3! +3! =3.2.1+3・2・1=12 (個) 未解決 回答数: 1