学年

教科

質問の種類

数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

回答募集中 回答数: 0
数学 高校生

高次方程式についての質問です。青のマーカーを引いたところと、紫のアンダーラインをつけたところが何を言ってるのかさっぱりわかりません。紫のところは何故そうなるのか分からず、青のマーカーはこの文で何を伝えたいのか、文章の意味すらよくわかりません。どちらか片方だけとかでもいいので... 続きを読む

* り 改) 余り x) を とき Think 例題 53 割られる式の決定 3 高次方程式 115 **** x'+2x+3で割ると x+4余り, x2+2で割ると1余るような多項式 P(x) で,次数が最小のものを求めよ. 考え方 P(x) を4次式 (x+2x+3)(x+2) で割った余り R(x)は3次以下の式である. 解答 P(x) = (x2+2x+3)(x+2) (商)+R(x) m +2x+3で割るとx+2x+3で割ると、余りは、 割り切れる. 1次以下の多項式 P(x) をx+2x+3で割った余りと一致する. P(x) を4次式(x2+2x+3)(x+2)で割ったときの商を Q(x)余りをR(x) とすると (x)=(x+2x+3)(x2+2)Q(x)+R(x) ・・・・・・ ① と表せ,R(x)は3次以下の式である。 また、①において,P(x) をx+2x+3で割ると, (x+2x+3)(x+2)Q(x)はx+2x+3で割り切れるから, P(x)をx'+2x+3で割った余りx+4は, R(x) をx'+2x+3で割った余りと一致する。 つまり、R(x)=(x+2x+3)(ax + b) + x +4 ...... ② とおける. 同様に,P(x) を x+2で割った余りが-1であるから, R(x)=(x+2)(cx+d-1 ...... ③とおける. ②③より, (x2+2x+3)(ax+b)+x+4=(x+2)(cx+d)-1 が成立し, 左辺と右辺をxの降べきの順に整理すると ax+(2a+b)x2 + (3a +26+1)x +36 +4 =cx'+dx2+2cx+2d-1 これはxの恒等式であるから, n a=c, 2a+b= d, 3a+26+1=2c, 36+4=2d-1 これらを a b について解くと, a=1, b=-1 よって,②より R(x)=(x2+2x+3)(x-1)+x+ 4 = x + x+2x + 1 ①より P(x)=(x2+2x+3)(x+2)Q(x)+x+x+2x + 1 そして,P(x)の次数が最小になるのは Q(x) =0 のとき である. Focus 練習 53 **** よって、 求める多項式は, P(x)=x+x'+2x+1 割る式が4次式なの で、余りは3次以下 R(x) は3次以下の 式だから 2次式で 割ったときの商は1 次以下の多項式と なる. c, dを消去すると、 a +26=-1 4a-b=5 Q(x) =0 のとき, P(x) は4次以上の 式となる。 多項式 P(x)=A(x)・B(x)+R(x) のとき,P(x) をA(x)で割っ た余りと,R(x) を A (x)で割った余りは等しい費用 (x-1)2で割ると x +3余り(x+2)2で割ると-8x+12余るような多項式 P(x) で、次数が最小のものを求めよ. コン 2 うまくり

回答募集中 回答数: 0
数学 高校生

一次不等式の問題(2)です。 (a+2)x<4がx<4になるようにするんですけどどうして毎回場合分けしないといけないんですか。この場合だったら場合分けしたくてもすぐにa=-1って出て他の値は当てはまらないってすぐわかると思いました

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1) >x+α を解け。 ただし, αは定数とする。 000 (2) 不等式 ax<4-2x<2x の解が1<x<4であるとき, 定数αの値を漁 (2)類駒澤大] 基 基本34人 個す 指針 文字を含む1次不等式 (Ax > B, Ax <B など) を解くときは,次のことに注意数と A=0のときは、両辺をAで割ることができない。 AK0 のときは, 両辺を4で割ると不等号の向きが変わる。いうと指 (1) (a-1)x>a (a-1) と変形し, a-1>0, a1=0,α-1<0の各場合に分けて (2)ax<4-2x<2xは連立不等式 ax<4-2x 4-2x<2x と同じ意味。 まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 文字係数の不等式 割る数の符号に注意 0で割るのはタ CHART (a-1)x>a(a-1) [1] α-1>0 すなわちα>1のとき ① x>a まず, AxBO ①の両辺を で割る。 不等号の 0 > 0 は成り立たな 負の数で割ると の向きが変わる。 (1) 与式から 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x0 変わらない [3] α-1 <0 すなわち α <1のとき a>1のとき x>a, x<a よって a<1のとき a=1のとき 解はない, x<a 検討 (2) 4-2x<2x から -4x <-4 A=0のときの不 よって x>1 ゆえに,解が1< x < 4 となるための条件は, Ax>Bの解 ax <4-2x ...... ①から (a+2)x <4 ...... ① の解が x<4となることである。 [1] α+2>0 すなわち α> - 2 のとき,②から ② よって =0のとき、不等 0.x>B B0 なら 解はない なら解はすべ 4 x< よって a+2 4 a+2 =4 [I] 実数 ゆえに 4=4(a+2) よって a=-1 両辺に α+2 (≠0) これはα>-2を満たす。不 けて解く。 [2] α+2=0 すなわち α=-2 のとき,②は 0·x <4 よって、解はすべての実数となり、条件は満たされな 04は常に成り立 [3] α+2<0 すなわち α <-2 のとき,②から ら,解はすべての 4 a+2 このとき条件は満たされない。 x<4と不等号の [1]~[3] から a=-1 違う。 練習 (1) 不等式ax>x+a2+α-2を解け。 ただし, αは定数とする。 ④ 38 (2) 不等式

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

1と2でcが異なるのがよくわかりません。 どうやって考えればいいんですか?

○○ 基本 71 日本例題 を求めよ。 の共有点と連立1次方程式の解 立方程式 ax+3y-1=0, 3x-2y+c=0 が,次のようになるための条件 ただ1組の解をもつ 00000 (2) 解をもたない (3) 無数の解をもつ p.121 基本事項 GHART & SOLUTION 2直線が 川 1点で交わる 2直線A, B の共有点の座標 ⇔ (共有点は1つ) 連立方程式が 連立方程式 A, B の解 125 が一致 よい。 [2] 平行で一致しない (共有点はない) ⇔ ⇔ [3] 一致する(共有点は直線上の点全体) 答 ax+3y-1=0 から 3x-2y+c=0 から y=-- a 1 x+ 3 3 y=1/2x+1/2 1組の解をもつ 解をもたない 無数の解をもつ (1) 連立方程式 ① ② がただ1組の解をもつための条件は, 2直線 ①② が1点で交わる, すなわち平行でないことで a 3 が -1 ある。 0 よって 3 2 9 ゆえに a- 2 cは任意の実数 (2)連立方程式 ①,②が解をもたないための条件は, 2直線 ① ②が平行で一致しないことである。 inf 2直線 ax+by+c=0, azx+bzy+cz=0 が | 平行であるための条件は ab-ab=0 3章 11 である(p.120基本事項3) から (1) は b2-azb≠0 より求めてもよい。 なお, a2=0,620, 20 のとき 2直線が 一致するための条件は a_bicy a2 b₂ C2 直線 である。 (3)は、この式から 求めてもよい。 0 よって a = 3 1 C ・キ 3 2'3 2 9 ゆえに a= 2 3

回答募集中 回答数: 0
数学 高校生

(1)ではなぜ余りの部分をax²+bx+c にしないのかと、途中の式変形を教えていただきたいです。 (2)ではなぜ3k,3k+1,3k+2と場合分けしているのかを教えていただきたいです。

28 第1章 式と証明 問 9 整式の割り算(3) m, nは正の整数とする。 (1) 3m +1 を 1 で割ったときの余りを求めよ。 (2) +12+x+1で割ったときの余りを求めよ。 これは=0 (n (室蘭工業大) 以上より、 + n=3k(k → 精講 (2) (1)において -1=(x-1)(x2+x+1) より, n=3kのとき は、処理済です. あとは, n=3k+1,3k+2 と場 合分けして調べていきましょう. (1) cam=(x3-1+1)^ = (X+1)" とみて展開 (1) まずは3m を -1で割るこ解法のプロセス とを考えます. n=3k+1 n=3k+2 (2)n=3k, 3k+1, 研究 (2) 3k+2 と場合分けする 解答 (1) x3m+1=(x3)"+1=(x-1+1)"+1 X=x-1 とおいて二項展開すると x3m+1= (X+1)"+1 ={(Xの1次以上の整式)+1}+1 =X(Xの整式)+2 =(-1) (zの整式) +2 よって, x3m+1 を-1で割った余りは 2 (2)(1) より が正の整数のとき これは 二項定理より た余り (X+1)m =mCoX™•10+mCiX~1.14+ この ...+mCmX1" すなわ よい 3k+1=(x-1)(x の整式) +2 である. =(x-1)(x²+x+1)Q(x)+2 (Q(x)はxの整式) n=3k のとき, "+1 を x'+x+1 で割った余りは2である. n=3k+1 のとき,①の両辺にxをかけて, 変形すると 3k+1+x=(x2-x)(x²+x+1)Q(x)+2x 3k+1=(x2-x)(x²+x+1)Q(x)+m ・② 3k+1+1=(x2-x)(x'+x+1)Q(x)+x+1 これはk=0 (n=1) のときも成り立つ. n=3k+2 のとき,②の両辺にxをかけて, 変形すると mak+2=(x-x2)(x'+x+1)Q(x) +x m3k+2+1=(x-x2)(2+x+1)Q(x)+x2+1 =(x-1)(x'+x+1)Q(x)+(x²+x+1)-x で

回答募集中 回答数: 0