学年

教科

質問の種類

数学 高校生

教えていただきたいです( . .)"

- 分散 である。 おくと, 92 難易度★ 90 60 目標解答時間 SELECT SELECT 15分 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 (1)ある学校で生徒会長選挙が行われた。 100人の生徒が投票し、そのうち36 人がAさんに投票した。 投票した100人のうち1人を選ぶとき,その人がAさんに投票していたら 1,投票していなければ 0の値をとる確率変数を Xとする。 ア Xの期待値は 標準偏差は エオ カキ である。 (2)2人の議員を選ぶ選挙が行われ,100万人の有権者が投票した。 この選挙ではより多い得票率 があれば確実に当選する。 開票率 1%, すなわち 10000人分が開票されたとき, Bさんに3600票 が入っていた。この開票された票を無作為に選ばれた標本とするとき, 標本比率は である。 これをBさんの得票率の母比率の推定値とする。 また, 母標準偏差もここから推定される であるとする。 エオ カキ ケ ここで、 10000 は大きいから,標本比率は近似的に正規分布 Np に従う。 コサシ に対する信頼度 99%の信頼区間は 得点の2 ク ケ ス セン × = 0.99 イウ コサシ ことがわ より, 小数第4位を四捨五入すると 0. タチツ Sp0 テトナ 点 10) 法集 107 である。 これより,p> 1/23 と推定できるので,Bさんは「当選確実」と判断できる。 (3)2人の議員を選ぶ選挙が行われ, 10万人の有権者が投票した。この選挙では 1/3 より多い得票率が あれば確実に当選する。 N人分が開票されて, 36% がCさんに投票していた。 Cさんの得票率の母 比率がに対する信頼度99%の信頼区間が(2) と同じ信頼区間で 「当選確実」 と判断することができ るとき, N= である。 二 | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ 100 500 1000 141 10000 (配点 10) (公式・解法集 109 統計的な

回答募集中 回答数: 0
数学 高校生

この二つの例題のように、判別式を使う使わないはどう判断すればいいんですか、、、

44 数学Ⅰ 第2章●2次関数 【教 p.91~93.95】 例題 26 x軸との位置関係 2次関数 y=2x2 -kx+1のグラフがx軸と, 0と1の間, 1と2の間で交 わるとき 定数の値の範囲を求めよ。 □ 20 考え方 解 x=0, 1, 2 のときのyの値の符号を調べればよい。 f(x)=2x2-kx+1 とおく。 Ay 正 2次関数y=f(x) のグラフが右の図のようになれ ばよいから, [f(0)=1>0 正 これはつねに成り立つ。 k>3 ... ① ...2 0 f(1)=2-k+1=3-k<0 より, f(2)=8-2k+1=9-2k>0より<12/13 ①,②より3k</ 1 2 負 sim 207* 2次関数 y=x2+2kx-kのグラフがx軸と,2と0の間,0と2の間で交 わるとき 定数kの値の範囲を求めよ。 例題 26 例題 27 x軸との位置関係 2次関数 y=x2-x+k のグラフがx軸の0<x<2 の部分において異なる 2点で交わるとき, 定数kの値の範囲を求めよ。 考え方 判別式 (頂点のy座標), 軸, 区間の両端におけるyの符号に注目する。 解 f(x)=x2-x+k とおくと, -k· f(x)=(x-1)+k-1212 2次関数y=f(x) のグラフは下に凸で, 軸は直線 x=1/23 である。 軸が 0<x<2 の範囲にあるから, グラフがx軸の 0<x<2 の部分において, 異なる2点と交わるた めの条件は, f(x) =0 の判別式をDとすると, D=1-4k>0より, k<12/1 f(0)=k>0 ......2 f(2)=2+k>0 より k>-2 ①~③より, 0<<- 正 ・① 0 (1) 正 2負 2 11 87 x k 20

回答募集中 回答数: 0