学年

教科

質問の種類

数学 高校生

この問題の3番目の問題についてなんですが,この場合全ての整数が,0,1のどちらかになっていないと成立しないと思ってて,例えば、a1が3で他の解が0の時が想定されてないと思いました。 私の考え方の間違っている部分を教えてください

386 okakaka<a<a<9 次の条件を満たす整数の組 (a1,a2, 3, 4, 重要 例題 34 数字の順列 (数の大小関係が条件) (2) 0≤a≤a2a3 a4 a5≤3 α5) の個数を求めよ。 0000 基本32 88 3個の数字から異な 異なる 4個の数字から重複を 解答 (1) Kaz (3) aitaztastastas≦3, a≧0 (i=1,2,3,4,5) 指針 (1) α1, 2,..., as はすべて異なるから, 1, 2, ・・・・・, 個を選び,小さい順に,a1,a2, ..., as を対応させればよい。 求める個数は組合せ Cs に一致する。 (2)(1) とは違って、条件の式にを含むから, 0, 1, 2, 34 して5個を選び,小さい順に aaaa5を対応させればよい。 求める個数は重複組合せ&Hs に一致する。 (3)おき換えを利用すると,不等式の条件を等式の条件に変更できる。 ataztastastas+6=3 3-(a+a2+as+a+αs) =bとおくと また, a+az+αs+a+αs≦3から b≥0 よって、 基本例題 33(1) と同様にして求められる。 (1) 1, 2,......, 8の8個の数字から異なる5個を選び, 小 さい順に a1,a2, ....., 45 とすると, 条件を満たす組が 1つ決まる。 よって, 求める組の個数は 8C5=8C3=56 (個) (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に α1, 2, ......, as とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4Hs=4+5-1Cs=8C5=56(個) (3) 3-(a1+a2+as+a+αs)=bとおくと a1+a2+as+a+as+b=3, ai≧0 (i=1,2,3,4,5),60 ...... ① よって, 求める組の個数は, ① を満たす0以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) 別解 a1+a2+as+a+as=k(k=0, 1, 2, 3) を満たす 0 以上の整数の組 (a1, A2, 3, 4, 5) の数は5Hであ るから 5Ho+5H1+5H2+5H3 =4Co+5C1+6C2+7C3 =1+5+15+35=56 (個) 検討 一等式 (2),(3)は次のように 解くこともできる。 (2) [p.384 PLU ONE の方法 bi=aiti(i=1,2 4, 5) とすると, 0<bı <b<by<br< と同値になる。』 (1)の結果から (3)3個の○と 切りを並べ、例 ||0|100|| 合は(0,1,0, を表すと考える このとき A|B|C|D とすると,A, D, E の部分に の数をそれぞ a3, 4, as と 組が1つ決ま 8C3=56( 5桁の整数nにおいて, 万の位, 千の位, 百の位、十の位、一の位の数字を a, b, c, d, e とするとき, 次の条件を満たすnは何個あるか。 (1) a>b>c>d>e _3) a+b+c+d+e≦6 (2) a≧bcd≧e

未解決 回答数: 1
数学 高校生

コサシの線を引いたところが理解できませんでした。教えて頂きたいです🙇‍♀️

第4問 (配点 20)の点(可) 太郎さんと花子さんの学校で全員参加の球技大会が実施される。競技の種類は、 サッカー,バレー,テニスの3種類で,1人が参加できる競技は一つだけである。 太郎さんと花子さんは,自分たち2人とその友人6人の合計8人の競技への参加 方法について話している。 太郎:前回の球技大会ではみんな同じ競技に参加したから、今回の球技大会 では,どの競技にも8人のうちだれかが参加するようにして,あとで 情報交換しようよ。そうしたとき,どの競技に何人が参加することに なるのかな。 花子:どのような人数の組合せがあるか考えてみようよ。 8人を三つに分ける とき,例えば,{1人, 1人, 6人} や {1人,3人,4人} などがあり,人 数の組合せは全部で5通りあることがわかるね。 太郎:でも,競技の種類は3種類だから,それぞれサッカー,バレー,テニ スの場合を考えないといけないね。 どの競技に何人が参加するかを対応させる方法は,8人を {1人, 1人,6人} に 分けるときは ア 通り, {1人,3人,4人} に分けるときは イ |通りである。 太郎:他の人数の組合せも同じように調べてもいいけど,他に方法はないの かな。 花子:次のように考えたらどうかな。 一花子さんの考え 8個の○と2本の仕切り棒」を用意し、それらを横一列に並べて 左側のより左にある○の個数をサッカーの参加人数 2本のの間にある○の個数をバレーの参加人数 右側のより右にある○の個数をテニスの参加人数 と対応させて考える。 例えば, 〇〇〇〇〇〇〇〇の場合なら サッカーが3人, バレーが3人, テニスが2人 となる。

回答募集中 回答数: 0