学年

教科

質問の種類

数学 高校生

赤線ひいたところ、なぜそこが90°って分かるんですか🙇‍♂️

64 第3章 図形と計量 *11 三角形は,与えられた辺の長さや角の大きさの条件によって, ただ一通りに決まる 場合や二通りに決まる場合がある。以下,△ABC において AB=4 とする。 (1) AC=6,cos<BAC= とする。 このとき, BC=ア であり, △ABCはただ 一通りに決まる。 (2) sin/BAC= 1/12 とする。このとき, BC の長さのとり得る値の範囲は,点Bと直 3 嵐 イ 線 ACとの距離を考えることにより, BC≧ ウ である。 BC= イ ウ またはBC=エ のとき,△ABC はただ一通りに決まる。 また,∠ABC=90°のとき, BC=√オ である。 したがって,△ABCの形状について,次のことが成り立つ。 イ ウ <BC<オ のとき,△ABC は •BC=√オ のとき, △ABCは •BC > オ かつ BC≠ I のとき,△ABCはク ク の解答群(同じものを繰り返し選んでもよい。) Gaia ⑩ただ一通りに決まり,それは鋭角三角形である ① ただ一通りに決まり,それは直角三角形である ②ただ一通りに決まり, それは鈍角三角形である 建 ③二通りに決まり,それらはともに鋭角三角形である ④二通りに決まり、 それらは鋭角三角形と直角三角形である ⑤二通りに決まり,それらは鋭角三角形と鈍角三角形である ⑥二通りに決まり,それらはともに直角三角形である ⑦二通りに決まり,それらは直角三角形と鈍角三角形である ⑧ 二通りに決まり,それらはともに鈍角三角形である -BAD [22 共通テスト

未解決 回答数: 0
数学 高校生

赤線ひいたところなんでですか?解説の図のように、BC1も4の時もあるんじゃないんですか?三角形がただ一通りに決まるってどういうことですか🙇‍♂️

64 第3章 図形と計量 *11 三角形は,与えられた辺の長さや角の大きさの条件によって, ただ一通りに決まる 場合や二通りに決まる場合がある。以下,△ABC において AB=4 とする。 (1)AC=6,cos ∠BAC= 一通りに決まる。 =1 とする。このとき, BC ア であり, △ABCはただ (2) sin ∠BAC= とする。このとき、BCの長さのとり得る値の範囲は,点Bと直 3 イ 線 AC との距離を考えることにより, BC≧ ウ である。 BC= またはBC=エ のとき, △ABC はただ一通りに決まる。 ウ また,∠ABC=90° のとき, BC=√オ である。 したがって,△ABCの形状について,次のことが成り立つ。 イ ウ <BC<√オ のとき,△ABC は カ ° BC=√オ のとき, △ABC は • BC > √ オ かつ BC≠ I のとき,△ABCはク。 カ の解答群(同じものを繰り返し選んでもよい。) ale ⑩ ただ一通りに決まり, それは鋭角三角形である 合 ① ただ一通りに決まり,それは直角三角形である 通りに決まり,それは鈍角三角形である ② ③二通りに決まり,それらはともに鋭角三角形である ④二通りに決まり,それらは鋭角三角形と直角三角形である ⑤二通りに決まり,それらは鋭角三角形と鈍角三角形である ⑥ 二通りに決まり,それらはともに直角三角形である ⑦二通りに決まり,それらは直角三角形と鈍角三角形である ⑧ 二通りに決まり,それらはともに鈍角三角形である -BAD Aale [22 共通

解決済み 回答数: 1
数学 高校生

(2)の問題なんですけど、2枚目に撮ったところが分からなくて…私は解説の横に書いた手書きの図なんですけど、こうなると思って計算したら間違えてしまいました。なぜ3、5、aがあの場所になるのか解説してくだされば幸いです、宜しくお願い致します🙇

(例題79) (1) 次の三角形は鋭角三角形, 直角三角形, 鈍角三角形のいずれか a=3,b=10,c=8 3辺の長さが, 3, 5, a a この値の範囲を定めよ。 の三角形が鋭角三角形となるように正の数 E ポイント (1) 最大角は最大辺の対角( (2)鋭角三角形とは,三角形が成立し, かつ鋭角三角形 と考えます。鋭角三角形になる条件は, Aが鋭角かつBが鋭角 wwwww パターン(74) だからBになります。 三角形が成立しなければ 鋭角条件を満たしても 意味ないよね と考えます。 ポイント B C この三角形では,最大角はAかBかわからない。 Cだけはありえない 解答 ∴AとBの両方が鋭角になれば鋭角三角形!! (1)最大角はBである。 よって 82+32-102__27 cosB= 2.8.3 (2) 三角形の成立条件より, より、鈍角三角形。 48 負 [3+5>a ••• ① 3辺を図のようにおく 3+α> 5 ... ② C la+5>3 ...③ B (5) また,鋭角三角形になるための条件はa>0より 4 0<a<v34 (3) COSA= 3²+5²-a² 2.3.5 lcosB= 32+α²-52 >034-a>0 ...④ ->0a²-16>0 2.3.a これより,4<a<√34 ① (2) -202 4 √34 8 a >0より a>4 パターン79 鋭角三角形, 鈍角三角形 171

未解決 回答数: 2
数学 高校生

2番の問題でなぜタンジェントを求めてるんですか?

258 基本例 例題 157 三角形の辺と角の大小 : 000 △ABCにおいて, sin Asin B:sinC=√7:√31が成り立つとき △ABCの内角のうち、最も大きい角の大きさを求めよ。 △ABCの内角のうち, 2番目に大きい角の正接を求めよ。 三角 p.248 基本事項園 の1つ 指針 (1) 正弦定理より, α: b:c=sinA: sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 基本例 1 AB=2, BC = (1)xのとり (2) AABC, 三角形の辺と角の大小関係より, 最大辺の対角が最大角 a<b⇔ A<B a=b A=B a>b⇔A>B であるから、3辺の比に注目し, 余弦定理を利用。 指針 (2) まず, 2番目に大きい角のcos を求め, 関係式 1+tan20=- 三角形の2辺の大小関係は,その対角の大小関係に一致する。) B (1) 三 (2) ここ 角 1 COS20 を利用。 例 C b により a (1) 正弦定理 解答 sin B sin C sin A a:b:c=sinA: sin B: sin C これと与えられた等式から よって、 ある正の数んを用いて ...... (*) 01- ak b√√3kk cos A= 2.√3k.k よって、 最大の角の大きさは 大の色である。 余弦定理により (√3k)2+k-√7k)2 と表される。ゆえに、が最大の辺であるから,4が最k を正の数として a:b:c=√7:13:1 sin A sin B ||a:b=sinA b C a b sin B SinC から b:c=sinB:si 合わせると(*)とい 解答 (1) よ (2) [ -008-288-CLA b C √3 1 とおくと -3k2 √3 2√3k2 2 A=150° (2)(1) から2番目に大きい角はBである。 k2+√7k2-(√3k)2 Fa=√7k, b=√1 c=k= abcからA よって,Aが最大の ある。 余弦定理により 203 A 5k² cos B= 2.k.√7k 275 k √3 2√7 01 B √7k 1 等式 1+tan2 B= から cos2 B tan2B= cos² B 5 1=(2/7)-1 28 001- 320- i-1= 25 25 A> 90° より B <90°であるから 5 3 V 25 tan B> 0 したがって tan B= 5 練習 △ABCにおいて 8 7 ② 157 sin A sin Basin C が成り立つとき √√3 = ■三角比の相互関係。 (p.238 例題 144 参 DARD (1)の結果を利用。 △ABC は鈍角三角形 (1)△ABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2)△ABCの内角のうち、最も小さい角の正接を求めよ。 [類 愛知工 | 練習 ③ 15

未解決 回答数: 0
数学 高校生

数lの三角形の外心と垂心にについての問題です。 黄色い線で引いたところが分からないです。 自分は、①からNMとBCが等しいと分かったから③になると思ったのですがネットで調べたところ、平行=等しいではないと書かれていたので、③の成り立つ条件が分からなくなりました。 稚拙な文章... 続きを読む

69 Ca 20° A 30 B ●362 基本事項 3 ば、(1)にお 外接円を考 367 基本 例題 67 三角形の外心と垂心 00000 ABC の辺BC, CA, ABの中点をそれぞれL, M, N とする。 △ABCの 明せよ。 ただし, △ABCは鋭角三角形または鈍角三角形とする。 外心OはLMN の垂心であることを、次の3つのことを示すことにより証 OLINM, ONILM, OMILN CHART & SOLUTION p.362 基本事項 3. 三角形の外心と心 区別をはっきりと 外心 垂心 3辺の垂直二等分線の交点 3頂点から対辺またはその延長への垂線の交点 また, 中点連結定理を利用する。 この例題において、 例えば△ABC と中点N,Mに対して 忘れぬ AN=NB, AM=MC NM//BC 3 7 解答 N,Mはそれぞれ辺 AB, CA の 中点であるから 鋭角三角形 NM // BC A . ① 点Oが ABC の外心 ⇒点0は辺BCの垂直二 等分線上にある。 を利用。 角) x2 点OはABCの外心であり, 点L は辺BCの中点であるから N MO 0 0 h 三角形の辺の外心、内心、重心 ①,② から OLLBC OLINM ・② ・③ B B L H C 同様に, 点L, M はそれぞれ 辺BC, CA の中点であり, 鈍角三角形 A ON⊥AB であるから B N M ONILM ④ 点L, Nはそれぞれ辺BC, AB の 中点であり, OMICA であるから B 2 # AC L OMILN *****. ⑤ ③ ④ ⑤ から, 点Oは△LMN CA: CD- 垂心である。 とし nf △ABC が ∠A=90° の直角三角形の場合, △LMNは ∠L=90° の直 角三角形となり △ABC の外心O (点L)は△LMN の垂心となる。 ① inf, 単に 「Oが△LMN の垂心であることを証明せ よ」 という場合は,左の解 答において, ③~⑤のうち HA2つを示せばよい。 MOS-HA

未解決 回答数: 1