学年

教科

質問の種類

数学 高校生

写真の問題の赤線部についてですが、 z,p,qをそれぞれ、OZ→,OP→,OQ→と定めると、(以下、矢印記号は省略します)z=p+qtはOZ=OP+tOQとなることから、赤線部のようなことは言えないのではないのでしょうか?もし、1番下のポイントに書いてあるように関係式が、O... 続きを読む

28 直線 (ⅡI) 複素数平面上に2点 α=1+2i, β=2+i が与えられている.この2 点を通る直線上の点zは,実数t を用いて, z=(1+t)+(2-t)i と表せ ることを示せ. △△ xy平面で考えるとαとは (1,2)のことで, βとは (2,1) のことだから, 求める直線は, 2点 (1,2),(2, 1) を通る直線になります. このイメージで解答をつくっていけばよいのです. 精講 **** 20 47 解答 ポイント α限が一直線上にあることを 表している。 3 1 O a 複素数平面上の2点α, βを通る直線は z=a+(β-a)t (t: 実数)と表せる PS 22 z-a=t(β-α)より、 子供え z=α+ (B-α)t =(1+2i)+(1-i)t =(1+t)+(2-t)i 今回で 注 この結果を逆に考えれば, z=x+yi において, x,yがパラメーメニド 夕tの1次式で表されているとは直線上を動いていて, z をt につ いて整理すれば z = p+gt (p,q: 複素数)と表せ, zの軌跡は点が を通り,傾き q方向に動いてできる直線になります. ( 演習問題28) 47210 1 2 3 IC のイメージ 直az=ta の豆は直線上 にある。 ImHg

回答募集中 回答数: 0
数学 高校生

(2)の(イ)で質問があります。 (n+2)段の階段の登り方を考えるのは、 最初に一段登る時と最初に2段登った時の場合分けをするためですか? それとも、a[n+2]を表すためですか? また、赤矢印のところはどういう考え方でしょうか。 よろしくお願いします!

基礎 134 場合の数と漸化式 (1) 5段の階段があり,1回に1段または2段 登るとする.このとき,登り方は何通りある か.ただし, スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1)と同じようにn段の階段を登る方法が an 通りあるとする. このとき, (ア) a1,a2 を求めよ. (イ) n ≧1 のとき, an+2 を An+1, an で表せ . (ウ) αg を求めよ. 精講 (1) まず,1段,2段, 2段と登る方法と2段, 1段,2段と登る 方法は,異なる登り方であることをわかることが基本です。 次に、 1段を使う方法は5が奇数であることから1回 3回 5回のどれかです. そこで、1と2をいくつか使って, 和が5になる組合せを考えて, そのあと 入れかえを考えればよいことになります. (2)(イ)これがこの134 のメインテーマで, 漸化式の有効な利用例です. 考え 方は,ポイントに書いてあるどちらかになります. この問題では,どちらで も漸化式が作れます. (ウ) 漸化式が与えられたとき,一般項を求められることは大切ですが,使い 方の基本は番号を下げることです. 解答 (1) 5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段 2段 3回使う組合せは, 1段, 1段, 1段2段 5回使う組合せは,1段,1段, 1段,1段1段で それぞれ,入れかえが3通り、4通り、1通りあるので 3+4+1=8 (通り) (2) 1段登る方法は1つしかないので, α=1 2段登る方法は、 1段, 1段と, 2段の2通りあるので, a2=2

回答募集中 回答数: 0
数学 高校生

矢印部分の変形が分かりません。

402 重要 例題 44 ベクトルと軌跡 WALET EN 平面上の△ABC は BA•CA=0 を満たしている。 この平面上の点Pが条 件 AP・BP +BP・CP+CP ・AP=0 を満たすとき, Pはどのような図形上の [ 岡山理科大〕 点であるか。 LUTION △ABC の問題 Aを始点とする位置ベクトルで表す ・・・・... 条件式の中の各ベクトルを, Aを始点として, ベクトルの差に分割して整理する。 ベクトル方程式に帰着できないかと考える。 解答 BA・CA=0 から、△ABCは∠A=90°の直角三角形である。 | BAICA AB=1, AC=C, AP= とすると、条件の等式から Þ· (p−b) + (p−b) · (p—c) + (p—c)• p=0 6-c=0 BA・CA = 0 から |B³² − b •p+|B³²− c •p-b•p+|p|²-c•p=0 35²-2(6+c) p=0 よって 整理すると ゆえに よって 1/23(+2)+(1/16+c)=(1/315+)2 ・+1 ゆえに |õ— — ² (6 + c)² = | b + c ³² |b³−²3 (b+c)•b=0 辺BCの中点をM, AM = m とすると cc = 2mを①に代入すると m= よって 基本41 b+c 2 Aを始点とする位置べ クトルで表す。 AB・AC=0 EXERO A 35 ③ 12=800-A01.24 ◆2次式の平方完成と同 様に変形する。 Mも定点である。 YUEGO inf. Giả AABCOLL →0である。AD |p-²m-²3m AG=12/23 m とすると,Gは線分 AM を 2:1に内分する点で ある。 したがって,点Pは△ABCの重心Gを中心とし、半径が 50+A Gc AG の円周上の点である。 # NBA MSC 14P 10+ÃO)1+ÃO²-ATO (S) 3873 P=0 31

回答募集中 回答数: 0