学年

教科

質問の種類

数学 高校生

数学の質問です (2)の問題でなぜ(1)のような場合分けのやり方ではダメなのですか? 解答よろしくお願いします🙇

第1章 IP 19 絶対値記号のついた学式 33 (解Ⅲ) 34 を利用すると・・・) Y y=x-3| のグラフは右図のようになるので, PAS y=x-31 3 y<2 となるæの値の範囲は 1 <x<5 2 y=2 次の不等式を解け (1) x-3/<2 .......① (2)|x+1/+/x-1/4 ......② 精講 絶対値記号の扱い方は,不等式の場合も方程式 (18) と同様に、 国 で学んだ考え方が大原則ですが,ポイントⅠの考え方が使えるなら ば、場合分けが必要ない分だけラクです。 また,3で学ぶグラフを利用する考え方(解Ⅲ)も大切です。 (1) (解Ⅰ) 解答 |-3|<2 は絶対値の性質より 2<x-3<2 (解Ⅱ) : 1<x<5 (2) i) <-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)-(x-1)<4 . -x-1-x+1<4 よって, -2<x<-1 i-1≦x≦1 のとき x+1≧0, x-1≦0 だから -2<x ? ②は (x+1)(x-1) <4 .. 0.x+2<4 0.x<2 よって, -1≦x≦1 をみたすすべての i) 1<z のとき x+1>0, x-1>0 だから ②は (x+1)+(x-1) <4 .. x<2 よって, 1<x<2 0 1 3 ◆不等式をみたす xを求めるので は式に残して おく 基礎問題 「基礎間」とは、入試に できない)問題を言いま 本書ではこの「基礎問」 効率よくまとめてありま ■入試に出題される 取り上げ、教科書 行います。 特に、 実にクリアできる ■「基礎間」→「精 題」で1つのテー ■1つのテーマは原 x-3 |r-3|= (x≥3) (3) i) x≧3のとき ①はx-3<2 :.x<5 よって, 3≦x<5 ii) x<3のとき ①は(x-3)<2 .. -x+3<2 ∴ 1<x よって, 1<x<3 i), ii) をあわせて1<<5 れないこと <x<3と仮定し れないこと i) ~i) をあわせて, -2<x<2 絶対値の中身が 0 となるところ で場合分け ポイント x≧3と仮定し ていることを忘 Ⅱ. |A| = A= -A (A<0) 1.xk<a (a>0) のとき, A (A≥0) -a<x<a ていることを忘 演習問題 19 次の不等式を解け. (1) |-2|>2 (2)|x-1|<|2x-3|-2

回答募集中 回答数: 0
数学 高校生

2番の右上の最後の3行の計算の仕方がわかりません

第4章 020 のとき,関数 y=cos20+√3 sin 20-2√3 cos0-2sin0 ①について 次の問いに答えよ. (1) sin0+√3 cosa=t とおくとき,tのとりう (2) ①tで表せ. (3) ①の最大値、最小値とそれを与えるの値を求めよ. 精講 60 (2) の式と似ていますが, 60(2)は sinx と cosの2種類のま 図は sin0, cos 0, sin 20, cos 20 の4種類の式である点が います。 誘導がついているとはいえ,それに従うだけでは(2) づまります。 ポイントは, sine, cos から, cos 20, sin 20 を導く手段が けられるかどうかです. =cos20+√3 sin20+2 cos 20+√3 sin20=t-2 よって、 y=ピ-2-2t -12-21-2 1-60520+ 3160520 2 11/21+1=2 |101 注 sin20, cos20 がでてくると, cos20に変えられることを覚えてお きましょう。 (3) (2)より,y=(t-1)2-3 (1)より, -1sts√3 だから t=-1 のとき, 最大値1 t=1 のとき, 最小値 -3 次に, t=-1 のとき -1-2v3 --3 1√3 sin(9+1)=-1 だから,sin(0+/4/5)=1/2 よって、+1= 6 0= 9=-77 2 また, t=1のとき 2 2sin (+4)-1 だから、sin (e+/-/12/ 16 解答 π (1) t=sin0+√3 cose =2(sin 3 +cos • ■合成して0を1 にする よって、0+= 以上のことより, .. 0=- 3 6 6 π 2 2 最大値 1 0=- 最小値 -3 == 2 =2 π - sin cos o + cos osin / / =2sin (0+/4) 4)=2sin(+/-) π π より、+1/7だから、 2≤sin (0+- 2 ..-1≤t≤√3 (2)=(sin0+√3cost) 3 3 =sin'0+2/3 sincosd+3cos20 1-eos +√3sin2+3. 2 2番 1+cos20 2 の公式 v3 ポイント sin sin20 cos 20 だから cos cos20 cos 20 (asin0+bcose) sin20, cos 20 の式 -1- Sia20 演習問題 61 12倍角半角の OMO のとき, 関数 y=2sin0-2√3cos0+cos20-√3 sin20 の最大値、最小値を求めよ.

未解決 回答数: 1