学年

教科

質問の種類

数学 高校生

2の(3)の解説に線を引いた部分がわからないです

実 擬力 Date k=2が2直 テスト2 2次 2 13 ①と問題を比較をして, a, b, c, 2+ 4+ 13 dの値を探しましょう. 1 1 1 1 a+ 2+ 1 2+ ⑥ + 1 1 1 4+ C+ 3 d 以上より 傾きを求めて y=ax+b に代入 y切片を求めて完成してもよい 点A(-3, 9), C (4, 16) を通 (4,16) る直線 C y-9=- 9-16 -3-4 {x-(-3)}より A (-3, 9) B(1,1) y=x+12 0 a=2,b=2,c=4,d=3 となります。 点B(1, 1), 点C (4, 16) を通る ② x = 2 答え: α = 2,6= 2,c=4,d=3 直線 y-1= 1-16 1-4 (x-1)よりy= 5x-4 2 解答・解説 2 右図の斜線部分に含まれる点 (x,y)でx,yともに整数となる ものについて考える。 周上の点 も含むと考え、次の問いに答え なさい。 y=x2 (4, 16 A 今回の題意からx, yが共に整数であることを踏まえて, x=2の直線 上にあるyの値に着目します (図の赤い部分). すなわち "x=2と直 ②の交点”以上 "x=2と直線の交点” 以下にあるyの整数値の 個数より 5×2-4≦y≦2+12 ②にx=2を代入 ①にx=2を代入 これより6≦y≦14 (-3, 9) B(1, 0 この範囲でyの値が整数になるのは y=6,7,8,9,10,11,12,13, 14の合計9個. (2)直線上には何個ありますか。 ◆解答・解説◆ (2) 地道に数えていくのも1つの方法ですが、今回は計算で解いてみま (3) 斜線部分内には何個ありますか。 す.x=2が2直線と交わるのでその交点のy座標に着目します。 2点(x1,y1)(x2,y2)を通る直線の求め方は y-y1= y-y2 -(x-x1) X1-X2 で求められる. ので、 05 ◆解答・解説 答え: 9個 (3)(2)の解き方を応用して x=-3からx=4までについて」が整数値 をとる個数を計算で出してみましょう. A(-3, 9),B(1,1) 84 85

回答募集中 回答数: 0
数学 高校生

分かるとこだけでも式を教えて欲しいです🙇‍♀️

5 9 A, B, Cの3人がじゃんけんを1回するとき,次の確率を求めよ。 (1) Aだけが勝つ確率 P. 46, 47 1 (2) 全員が違う手を出す確率 (3) 誰も勝たない, すなわちあいこになる確率 10 10本のくじがある。 そのうち当たりくじは1等が1本, 2等が3本で あり、残りははずれくじである。 このくじから同時に3本を引くとき 次の確率を求めよ。 (1) 当たりくじを少なくとも1本引く確率 (2)1等、2等、はずれくじをそれぞれ1本ずつ引く確率 → p.50~52 5 2 (3) 2等を2本以上引く確率 まで、何も得られない 11 001 数直線上を動く点Pが原点の位置にある。1個のさいころを投げて、 3の倍数の目が出たときはPを正の向きに1だけ進め,3の倍数でな い目が出たときはPを負の向きに1だけ進める。さいころを5回投げ 終わったとき,Pの座標が3である確率を求めよ。 →p.59 応用例題 11 12 当たりくじ3本を含む10本のくじを, A, B, Cの3人がこの順に1本 ずつ引く。 ただし, 引いたくじはもとにもどさない。 このとき,次の 確率を求めよ。 → p. 62, 63 (1)A, B がはずれ, C が当たる確率 (2) Cが当たる確率 2013三者択一式の問題が6問続けて出題される。どの問題でもでたらめに 答えを選ぶとき,次のものを求めよ。ただし、各問題でどの答えを選 ぶ確率も,それぞれ 1/18 と考えてよいとする。 (1)1問だけ正解する確率 (2) 正解する問題数の期待値 10

回答募集中 回答数: 0