学年

教科

質問の種類

数学 高校生

数Bの統計分野です。 標本平均の平均が母平均に等しくなる理屈は理解しているのですが、この(2)において、標本平均を母平均と同じになるとしているように感じたのですが、どういうことか解説お願いします。

例題 342 標本平均の平均・ 標準偏差 ☆☆☆ (1)ある高校の男子の体重の平均は62kg,標準偏差は9kg である。この 高校の男子 100 人を無作為に選ぶとき,この100 人の体重の平均 X の平 均と標準偏差を求めよ。 1 2 (2)ある母集団から復元抽出された大きさ3の標本の変量が X1, X2, X であるとき、標本平均 X の平均と標準偏差 を求めよ。ただし,X1の確率分布は,右の表 の通りとする。 X1 「-1 1 P 6 11 1-2 0|1|4 12 思考プロセス 母平均 m 母集団 母標準偏差 無作為 抽出 標本 個 公式の利用 E(X) =m 「標本平均の平均E(X) 【標本平均の標準偏差。(X) → 標本平均 X= = X1+X2+…+Xn n Action» 標本平均の平均は、母平均と同じであることを用いよ 解 (1) 母平均m=62,母標準偏差 o = 9, 標本の大きさ n = 100 より E(X)=m=62, o(X) 0 = n 9 9 o(X) = == 100 10 標本の大きさ, 母標準 偏差 6 のとき,標本平均 (2)母平均m, 母標準偏差 o は m=E(x)=(-1)/1/3 +0. +1. +2・ E(X₁²) = (−1)² . 1/3 +02. 6 14 4 1 2 12 1 +22. 1 12 1|2 a = o(X)= √E(X^*)-{E(X,)}=1-(1/2)=1/2 よって E(X)= =m= 2 (X)--- = 3 X の標準偏差は o(X) = - √n 標本の変量を X1,X2,..., Xn とすると =... =E(Xn)=m E(Xi) = E(X2) = 0(X1) = 0(X2) = == =o(Xn) = 0 V (X) = E(X2)-{E(X)} 3 2 3 2 標本の大きさ n=3

未解決 回答数: 0
数学 高校生

当たってるか見て欲しいです😭 あと空いてるところ教えて頂きたいです🙇‍♀️

2次方程式 学習した日 月日 ( 2次方程式 39 2次方程式の利用(2) 目標 2次方程式を利用していろいろな問題を解くことができる。 確認 1 大小2つの数がある。 その差は3で, 積が40であるという。 この2 一つの数を求めなさい。 沖縄カトリ 基本事 2次方程式 小さいほうの数をxとすると,大きいほうの数は+3 と表す <手順 ①一方の数 ことができる。 数をxを 積が40であることから, xx xxx+3) =40 ②数量間の 方程式を これを解くと, x= 5 +3-400 ③ 2次方程 (5)(x+8 =0 ④求めた ている えとする x= |-8 x=5のとき,大きいほうの数は5+3=8, x=-8のとき, 大きい ほうの数は-8+3=-5 これらは問題に適している。 よって求める2つの数は と と (小さい数) (大きい数) (小さい数) (大きい数) 練習② 次の問いに答えなさい。 (1) 大小2つの数がある。 その差は9で積が52 である。 小さいほうの数を求めなさい。 小さい数の、大きい数x+9 (2) 横が縦よりも2cm長く, 面 長方形の縦の長さを求めなさい xx(x+9)=52 x+90-52=0 (x+13)(xx-4)=0 X=4. X=-13 小さい数 X=-13. (3) ある数とそのある数を2乗した数との和は 72です。 ある数を求めなさい。 ある数のとおいて、 x+x72 878-92-0 (x+9)(0−8) 20 N=-9.8 (4) 連続する2つの整数があり した数の和は85になるこ

未解決 回答数: 0
数学 高校生

やり方教えて欲しいです😭

学習した日 月日 ( 2次方程式 38 2次方程式の利用(1) 立宜野 項 18m, 横9mの長方形の花畑に 右の図のような同じ幅の道をつくり たい。 花畑の部分の面積を42m²に (目標 具体的な問題を2次方程式を利用して解くことができる。 9m- DOD DD> DDDD xm =0の解が3 -4)=0 ると、 2=0 5. a. D> するには,道の幅を何mにすればよ 8m いですか。 (1) 道の幅をxmとすると, 花畑の縦の 部分は (8-x) mと表すことができる。 横の長さを表す式を求めなさい。 xm 宜野湾市立嘉数中学校 基本事項 2次方程式を利用して問題を解 <手順 ①求めるものをェとおく。 ②数量間の関係をつかみ、2次 方程式を立てる。 ③ 2次方程式を解く。 ④求めた解が問題の答えに適し ているかどうかを確かめ, 答 えとする。 きは、そのわけも書く (2)面積が42m²ということから, xを求めるための方程式をつくりなさい。 問題に適していない解があると (3)(2)でつくった方程式を解いて道の幅を求めなさい。 道幅が8m以上になる ことはあり得ない。 練習② 縦が36m, 横が45mの長方形の土地に、 右の図のように、 縦, 横同じ幅の道路をつけて残りを畑にしたい, 畑の面積が 1540m²になるようにするには道路の幅を何mにすればよい ですか。 (1) 道の幅をxmとして縦と横の長さを表す式を作りなさい。 もうに 縦 m 横 (2)面積が1540m²ということから, 方程式を作りなさい。 36m xm -45m xm m 道路を確認 1 のように移動し ても畑の面積は変わらない。 (3)(2)の方程式を解き、 道路の幅を求めなさい。 もう! 練習3 1辺がxcmの正方形の縦の長さを4cm短くし, 横を2倍にすると, 面積が90cmになった。 もとの正方形の面積を求めなさい。 xcm xcm xcm 4cm 自己評価 (5) とても まあ, できた できた

回答募集中 回答数: 0
数学 高校生

(3)の問題について、∠AOBがθであることがどこを見たら分かるのかわかりません。 問題文の中から掴めるのでしょうか?

250 基本 例題 1563倍角の公式の利用 000 2 5 | 半径1の円に内接する正五角形ABCDE の1辺の長さをαとし, 0=1とする。 (1)等式 sin 30+sin20=0が成り立つことを証明せよ。 (2) cose の値を求めよ。 (4) 線分AC の長さを求めよ。 指針 (3) αの値を求めよ。 0203 [山形大] P.247 基本事項 (1)30+20=2πであることに着目。 なお, 0 度数法で表すと 72° である。 (2) (1) は(2)のヒント (1) の等式を2倍角・3倍角の公式を用いて変形する と,cosの2次方程式を導くことができる。 0<cos0 <1に注意して,その方程式 を解く。 (3),(4)余弦定理を利用する。 (4)では,(2)の方程式も利用するとよい。 0= (1)=1/2xから 50=2π よって 30=2π-20 2050=30+20 解答 このとき sin30=sin (2π-20)=-sin200020 したがって sin 30+ sin20=0 (2)(1) の等式から 3sin 0-4 sin³0+2 sin cos 0=0 sin00であるから, 両辺を sin0 で割って 3-4sin20+2cos0=0 ゆえに 3-4(1-cos20)+2cos0=0 整理して 4cos20+2cos0-1=0 (*) 0 <cos0 <1であるから -1+√5 cos 0= 4 (3)円の中心をO とすると, OAB において, 余弦定理 により AB2=OA2+OB2-20A・OB cos o =12+1-2・1・1・ -1+√5 5-√5 a>0であるから a=AB= 4 2 5-√5 (4)△OACにおいて, 余弦定理により AC2=OA2+ OC2-2OAOC cos 20 =12+12-2・1・1・cos20=2-2(2cos20-1) Jeb 3倍角の公式であ sin30=3sin 0-4sin0 忘れたら, 30=20+0 と して, 加法定理と2倍角 の公式から導く。 (3) HOT (S) a B 1 1 (4) O D =4-4cos20=4-(1-2cos0)=3+2cose B AC > 0 であるから (2)の(*)から。 0 -1+√5 5+√5 AC= 3+2. = 2 16 D [土] E E

解決済み 回答数: 1
数学 高校生

解説お願いします。 (4)の問題で、1枚目の写真が模範解答で2枚目の写真が私の解答です。 模範解答と答えが違ったのですが、何がダメなのかを教えてほしいです。

そのプロセス log102 = =α, log103 = b とするとき, 次の式の値をα, 6で表せ。 (1) log105 (3) log100.6 公式の利用 (2)10g1045 (4) loge 0.75 ★★☆☆ log102 α, log103= b, log1010=1 より, 真数を 2, 3, 10 で表すことを考える。 (1) log105=log10 (2+3) としても log10 (M+N) は それ以上計算できない。陣 ⇒5を2,3, 10の積・商で表す。 (4)底が10でない。 まず, 底を10に変換する。 ←logio MN = log 10M+log10N M logio == N log 10 M-log10 N Action» 対数をほかの対数で表すときは, 対数の和や差の形に分解せよ (1) log105=log10 10 2 = log10 10-log102=1-a (2) log1045=logio (532) =10g105+ 10g1032 = log105 + 210g103=1-a+26 12/12 (3) logo√/0.6=10g10(10 = -10g10 2 1 = 5を2と10(底) で表す。 重要な変形である。 45 を素因数分解する。 (1)の結果を代入する。 小数は分数に直す。 loga M'=rloga M = = 12 1 10 (log106-10g1010) (log102+ log103-1) 1/12(4+6-1) (4) 底の変換公式により M loga N = loga M-loga N log60.75= log100.75 log106 logcb loga b log.a (S 3 ここで 10g10 0.75 = 10g10 4 |小数は分数に直す。 =10g103-10g104 =log103-210g102=b-2a 10g106=log10 (23) rexx = log102+log103 = a+b Jei agol よって b-2a log60.75= a+b 他の図。

解決済み 回答数: 1