学年

教科

質問の種類

数学 高校生

青チャート例題38(2)(3)より2次式の解の種類について質問です。 Kの場合わけしないといけないのは分かるのですが何故(2)は実数全てにおいて異なる二つの実数解になるんですか? (3)のように>0、=0、<0で場合分けする必要はないんでしょうか? また(2)のような答えに... 続きを読む

68 88 基本 例題 38 2次方程式の解の判別 0000 (3)x2+2(k-1)x-k2+4k-3=0 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 2x²-(k+2)x+k-1=0 (1) 3x²-5x+3=0 基 k p.66 指針 2次方程式 ax2+bx+c=0の解の種類は, 解を求めなくても, 判別式D の符号だけで 別できる。 異なる2つの実数解 質 公小 2次方程式の解の判別 D=0⇔重解 重解はx=- 2a D0⇔異なる2つの虚数解 解答 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は,(1)と変わらないが がkの2次式で表され,kの値による場合分けが必要となることがある。………… 与えられた2次方程式の判別式をDとすると (1) D=(-5)-4・3・3= -11<0 をも よって、異なる2つの虚数解をもつ。 つの (2) D={-(k+2)}-4・2(k-1)=k+4k+4-8(k-1) =k-4k+12=(k-2)2+8 ゆえに、すべての実数kについて よって、異なる2つの実数解をもつ。 する D>0 (3) 1/2=(k-1)^-1.(k+4k-3)=2k²-6k+4 =2(k2-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2 <kのとき 異なる2つの実数解 D = 0 すなわち k=1, 2 のとき 重解 D<0 すなわち 1 <k<2のとき 異なる2つの虚数解 D<0 一D>0」 CHES OF T {-(k+2)}2 の部分は, (1)2 =1なので, (+2 と書いてもよい。 1+CIDA ax2+2b'x+c=0 では D 4 α <βのとき 利用する (x-α)(x-B)>0 ⇔x<a, B<x α <βのとき (x-α)(x-B)<0 ⇒a<x<B D>0- 2 練習 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 31-12x 指

未解決 回答数: 1
数学 高校生

数Ⅰの二次関数の問題です。 x=-1,1で場合分けする理由を教えてください。 [2]に含めてもよいと考えてしまいました。 よろしくお願いします。

重要 例題 130 2次方程式の解と数の大小 (3) 000 方程式x+ (2-a)x+4-2a=0が1<x<1の範囲に少なくとも1つの をもつような定数αの値の範囲を求めよ。 基本 指針 条件が「-1<x<1の範囲に少なくとも1つの実数解をもつ」であることに 大きく分けて次のA, B の2つの場合がある。 A-1<x<1の範囲に, 2つの解をもつ (重解は2つと考える) ® -1 <x<1の範囲に, ただ1つの解をもつ A [1] 方程式の2つの解をα, B(α≦β) として, それぞれの場合につ + a いて条件を満たすグラフをかくと図のようになる。 ®は以下の4つの場合がありうるので注意する。 ® [2] ® [3] -1<x の範囲に B [4] a + B x は -1<x<1 の範囲に1つ、 <-1 または 1<x の範囲に1つ + x & x-x-2=0 (x-21 (x + 1) = 0 α=-1 A B= + -1 a -1 B1x x=-1と-1<x<1 の範囲に1つ f(x)=x2+(2-α)x+4-2aとし, 2次方程式f(x)=0の 解答 判別式をDとする y=f(x) のグラフは下に凸の放物線で,その軸は直線 a-2 x= である。 2 [1] 2つの解がともに-1<x<1の範囲にあるための条 件は, y=f(x) のグラフがx軸の-1<x<1の部分と異 なる2点で交わる, または接することである。 すなわち、次の (i)(iv) が同時に成り立つことである。 (1) D≥0 (Ⅱ) 軸が-1<x<1の範囲にある (iii) f(-1)>0 (iv) f(1)>0 (i) D-(2-a)2-4.1.(4-2a) =d+4a-12=(a+6)(a-2) D≧0から (a+6)(a-2)≥0 a≤-6, 2≤a ゆえに a-2 (ii) x= について 2 よって -2<a-2<2 ****** ① -1<a-2 <1 1 の範囲 2-a x=- 2-1 条件は 「少なくとも1 であるから, グラフがx軸 場合,すなわ この場合も含まれ [1] 軸 D=0 ゆえに 0<a<4 2 (i) f(-1)=-α+3であるから よって a<3 3. -a+3>0 +

未解決 回答数: 1