学年

教科

質問の種類

数学 高校生

[1]なぜ2π−αなのか図的に理解できないので教えてください 範囲を満たすためにやっているのはわかってるんですが,なぜこう表すのか理解できないです

う 重要 例題 21 複素数の極形式(2) 次の複素数を極形式で表せ。 ただし、偏角0は0=0<2πとする。 (1) cosaisina (0<a<2π) (2) sina+icosa (osa<) * 23と好 CHART @ SOLUTION 極形式r(cos+isin (1) 虚部の符号 - を+に→ sin(-9)=-sine を利用 実部も虚部に偏角を合わせる - cos (-8)=cose を利用 (2) 実部は sin を cos に 虚部は cos を sin に → COS A. Cos (e)sino, sin (6) = cose を利用 2 別解 与えられた複素数と Z = COsa + isina との図形的な位置関係から偏角 を求める。 解答 (1) cosa=cos(-a), -sina=sin(-α) であるから cosa-isina=cos(-a)+isin(-α) の形 三角関数の公式を利用 sinaticosa=cos だのか? =cos(2-a)+isin(2™-α) ① 0<a<2πより,0<2π-α<2πであるから,①は求める極形式である。 π (2) sing=cos (o), cosa=sin (フレーム)であるから 2 。 -icos a=cos (2-a)+isin (2-a) π π 0≦aより、0<a≦であるから, ② は求める極形式である。 ~² (2x - V 00000 (2) ²2=20 に関して対称であるから,の偏角は 2π-α よって z=cos (2π-a)+isin (2z-α) (2) z=sinaticosa とおくと z= (cosa-isina)=izo したがって,zはZを原点を中心と π ■αは偏角 0の条件 0≦<2πを満たさない。 基本10 YA 2π-α Zo

回答募集中 回答数: 0
数学 高校生

この囲んだ部分がどうしてこうなるのか分からないです!どなたか解説お願いします🙇‍♀️🙇‍♀️🙇‍♀️

1941 れる。 方程 て たは 条件 す。 5 =0 基本例題 184 対数不等式の解法 次の不等式を解け。 (1) logo.3 (2-x)≧logo.3(3x+14) (2) logz(x-2)<1+log(x-4) (3) (log2x)²-log₂4x>0 指針対数に変数を含む不等式 (対数不等式) も, 方程式と同じ方針で進める。 まず、真数>0と,(底に文字があれば) 底> 0, 底キ1の条件を確認し, 変形して loga A <10ga B などの形を導く。 しかし,その後は 解答 a>1のとき loga A <loga B⇔A<B 大小一致 0<a<1のとき logaA<loga B⇔A> B 大小反対 のように、底aと1の大小によって、不等号の向きが変わることに要注意。 (3) 10g2x についての2次不等式とみて解く。 (1) 真数は正であるから, 2-x>0かつ3x+14>0より 14 3 <x<2 底0.3は1より小さいから, 不等式より 2-x≦3x+14 よって x≧-3 2 DIS+Egolt >Egol S+ -3≦x<2 ①,②の共通範囲を求めて (2) 真数は正であるから,x-2> 0 かつx4>0より >4 1=log22,10g)(x-4)=-10gz(x-4)であるから, 不等式は logz(x-2)<10g22-10gz(x-4) ゆえに log2(x-2)+10g(x-4)<10g22 よって log₂ (x-2)(x-4) <log22 2は1より大きいから ゆえに よって x>4との共通範囲を求めて 4<x<3+√3 (3) 真数は正であるから x>0 ...... log24x=2+10g2x であるから, 不等式は (log2x)²-log2x-2>0 (log2x+1) (10g2x-2)>0 (2) 神戸薬大, (3) 福島大〕 基本 182, 183 重要 185 (x-2)(x-4)<2 ゆえに x2-6x+6<0 よって3-√3<x<3+√3 x²-6x+6=0 を解くと x=3±√3 また √3+3>1+3=4 log2x<-1,2<10gzx したがって log₂x<log2, log24<log₂ x 底2は1より大きいことと,①から0<x<1/12/4<x 練習 次の不等式を解け。 184 (1) log2 (x-1)+log (3-x) ≤0 (3) 2-log-x>(log3x)² 0<a<1のとき loga A≦loga B 2²=2²₁ A²B > (不等号の向きが変わる。) これから,x-2< x-4 が得られるが、煩雑にな るので, x を含む項を左 辺に移項する。 10gx=tとおくと t²-t-2>0 よって (t+1) (t-2)>0 (2) logs(x-1)+logs (x+2)≦2 p.301 EX 117 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

65の(2)なんですけど、なぜaベクトルの係数が0と分かるのでしょうか?緑の線で引いたとろです 教えてほしいです。

EX 65 正四面体OABC に対して, 3 点 0, A, B と同じ平面上の点Pが 3OP=2AP+PB を満たし (1) OP をa, で表せ。 いる。 OA=α,OB=6,OC=cとおくとき (2) △ABCの重心と点Pを結ぶ線分が面 OBCと交わる点をQとする。 OQ をd, b, c で せ。 [福井大 30P-2AP+PB から 3OP=2 (OP-ON) + OB-OP OP=ON+1/2OB=-a+1/26 よって (2) PQ:QG=s: (1-s) とすると OQ=(1-s) OP+sOG =(1-s)(+1/26) + s - (²-1)+(²-) 6 + 2 c 4 138-1=0 点Qは平面 OBC上にあるから 3 s=³ 4 ゆえに 0Q=³b+- 8 よって 1→ 4 点Dから平面ABCに下ろした垂線の 足をHとする。 Hは平面ABC 上にあるから DH=sDA + tDB+uDC, s+t+u=1 ・① =(s-u, -2s-3t-2u, -7s-6t-5u) DHは平面ABC に垂直であるから ゆえに DH AB=0 第2章 空間のベクトル G 4s+3t+2u=0 B 2, DH.AC=0 EX 座標空間に4点A(2, 1,0), B(1, 0, 1), C(0, 1,2), D (1,37) がある。 3点 A, B, C を通 66 る平面に関して点Dと対称な点をEとするとき, 点Eの座標を求めよ。 [京都大〕 ..…... ●D C と表される。 DA=(1, -2, -7), DB=(0, -3, -6), DC=(-1,-2,-5)であるから DH=s(1, -2, -7) +t(0, -3, -6)+u(-1,-2, -5) 1-s E Hh 平面ABC P DH⊥AB, DH⊥AC よって 6s+3t+2u=0 _C=(-2, 0, 2) であるから, ③ より u_u)x (-2)+(-2s-3t-2u)×0+(-7s-6t-5u)×2=0 って (5) [HINT] 平面 OBC 上 点は mi+nc で表され る。 ただし,m,nは実 数とする。 【3点G QPが一直 線上にあることから, PQ=sPG として考え てもよい。 その場合, OQ=OP+PQ =OP+SPG =(1-s) OP+sOG s+t+u=1」 の代わり に、 「AH=sAB+tA として考えてもよい。 の場合、DH=DA +7 ■B=(-1,-1, 1) であるから, ② より s_u)×(-1)+(-2s-3t-2u)×(-1)+(-7s-6t-5u)×1=0 としてDHの成分を を用いて表す。 口の係数が0。 HINT 点Dから平面 ABCに下ろした垂線の 足をHとすると, Hは線 分 DE の中点である。 よって DE=2DH DH の成分は, 「Hが平面ABC上にお る」, 「DH⊥平面ABC. から求めることができ Lint. 「DH =sDA+tDB+uDC

回答募集中 回答数: 0
数学 高校生

1番です。解説は[1]などの記述に数行使っているため 最後に3つまとめて答えを示していますが、 私の記述の場合、同じことを2回書いてるような記述になっています。この記述でも問題ないですか?

重要 例題110/2次不等式の解法 (4) 次の不等式を解け。 ただし, aは定数とする。 (1) x2+(2-a)x−2a≦0 (2) ax² ≤axise 基本106) 指針 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0 の2次方程式を解く。 それには の2通りあるが,ここで ① 因数分解の利用 [2] 解の公式利用 は左辺を因数分解してみるとうまくいく。 α<βのとき (x-a)(x-β)>0x<a, B<x (x-a)(x-B) <0⇒a<x<B α, βがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x²の係数に注意が必要。 > 0, a = 0, a < 0 で場合分け。 CHART (x-a)(x-B) ≧0の解α, βの大小関係に注意 解答 (1) x²+(2-a)x-2a≦0から (x+2)(x-a) ≤0 [1] a<-2のとき, ① の解は [2] α=-2のとき, ①は (x+2)² ≤0 よって, 解は x=-2 [3] -2 <a のとき, ① の解は-2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 -2 <αのとき -2≦x≦a ax(x-1) ≤0 (2) ax² ≦ax から [1] a>0のとき, ① から よって, 解は 0≤x≤1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 [3] a<0 のとき, ① から x(x-1) 20 よって, 解は x≦0, 1≦x 以上から x(x-1) ≤0 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のとき すべての実数; a<0のときx≦0, 1≦x ① 00000 [1] teli [2] [3] Vital -2 ① の両辺を正の数α で割る。 0≦0 となる。 は 「<または=」 の意味なので、 <と = のどちらか 一方が成り立てば正しい。 < ① の両辺を負の数αで割る。 負の数で割るから, 不等号の向き が変わる。 注意 (2) について,ax Sax の両辺を ax で割って, x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 177 3章 13 2次不等式

回答募集中 回答数: 0
数学 高校生

C'がx軸と異なる点で交わることを確認していなくてもax^2+2(a+1)-3a+1=0を解の公式で解けばxには2つの解があることを分かると思ったのですが、なぜ確認しなければならないのですか?

EXERCISES ②76 αは自然数とし, 2次関数y=x2+ax+b (1) b=1のとき, ①のグラフがx軸と接するのはα= のときである。 (2) b=3のとき, ①のグラフがx軸と異なる2点で交わるような自然数αの中で, α<9 を満たすαの個数は である。 [類 センター試験] 101.102 の値は である。 (一 12 グラフと2次方程式 ③77 aは定数とする。 関数 y=ax²+4x+2のグラフが,x軸と異なる2つの共有点をも つときのαの値の範囲は x軸とただ1つの共有点をもつときのa であり, as 1 batc>u51E ①のグラフを考える。 ) -102 ③78 2次関数y=ax²+bx+cのグラフをCとする。 C をx軸方向に3,y 軸方向に5だ け平行移動したグラフをCとする。 C を表す 2次関数が y=ax²+ (2a+2)x-3a+1であるとき (1) b,c を α で表せ。 (2) C'がx軸から切り取る線分の長さが19であるとき, αの値を求めよ。 -103 [京都学園大] ②79 (1) 放物線y=-x²+2(k+1)x-k² が直線y=4x-2と共有点をもつような定数k の値の範囲を求めよ。 (2) 座標平面上に、 1つの直線と2つの放物線 L:y=ax+b, C1:y=-2x2, C2:y=x²-12x+33 がある。 L と C およびL と C2 が, それぞれ2個の共有点をもつとき アロα2イロロー□<b<a²が成り立つ。ただし, a>0とする。 [ (2) 類 近畿大] <->105 77654197) *#${[85x5\>u! ③802 次関数y=ax2+bx+cのグラフが, 2点(-1, 0),(3,8) を通り, 直線y=2x+6 に接するとき, a, b,c の値を求めよ。 [日本歯大] ➡105 169 3章 12 グラフと2次方程式

回答募集中 回答数: 0