学年

教科

質問の種類

数学 高校生

グラフが点線だったり青丸、白丸だったりするのは何故ですか?

・実数 T 練習問題 13 次の2次不等式を解け. (1) 2.²-4x+5>0 (2) x2+x+1 < 0 (3) x2+6x+9≦0 (左辺)=0 の方程式がすぐに因数分解できない場合は,その方程式 精講 を解の公式を用いて解いてみましょう. そこでもし, 「実数解が存 「在しない」ときは,平方完成して左辺の関数のグラフを描いてみましょう. 「重解をもつ」ときも同様にグラフを描いてみます。 解答 (1) 2.2-4x+5=0 の解を求めるために,解の公式 を用いると, 2±√4-10_2±√-6 2 2 となり、この方程式は実数解をもたない.そこで x=- y=2x²-4x+5=2(x-1)²+3EDOS のグラフを描くと右図のようになる. このグラフは常にx軸より上側にある ので、この不等式の解はすべての実数 (2) x2+x+1=0 の解を求めるために, 解の公式を 用いると, -1±√1-4_ -1±√-3 2 2 となり,この方程式は実数解をもたない. そこで 2 3 y=x2+x+1=x- 1 = ( x + ²/2 ) ² + ²³/12 4 X= (3) 左辺を因数分解すると (x+3)² ≤0ROASTAL y=(x+3)2のグラフを描くと右図のようになる. このグラフがx軸上, あるいは軸より下側にあ るのはx=3のときだけなので,この不等式の 解はx=-3 20 -3 ここだけ が解 のグラフを描くと右図のようになる. このグラフがx軸より下側にあること はないので,この不等式は 解なし -3 IC 3 4 IC IC 第2章

未解決 回答数: 1
数学 高校生

なぜ実数解をrとおくのでしょうか? xのまま計算にはいるのはダメなのでしょうか??

第2章 高次方程式 **** 例題 42 係数に虚数を含む2次方程式の解 xの2次方程式(1+i)x2+(a-i)x+2(1-ai) = 0 が実数解をもつとき、 実数の定数aの値を求めよ.また,そのときの解をすべて求めよ. (慶應義塾大) 考え方 係数に虚数を含むので、判別式は使えない. 実数解をrとすると,もとの2次方程式は, (1+i)r²+(a − i)r +2(1-ai)=0 この左辺を A+ Bi=0 (A,Bは実数) の形に変形すれば A=0, B=0 である. (p.81 「複素数の相等」参照) 解答 この2次方程式の実数解を x=y とすると, ________________(1+i)r²+(a − i)r +2(1—ai)=0 30 (2²+ar+2)+(r²-r-2a) i=0$04 r, a は実数だから, Fod r2+ar +2=0 ………① r²-r-2a=0 ①② より (a+1)r +2(1+a)=0 (a+1)(r+2)=0 •2 Its =(8+)-1- したがって, (i)a+1=0 つまり, a = -1 のとき ① に代入すると, r2-r+2=0 ここで, 判別式 D=(-1)2-4・1・2=-7<0 rは実数であるから,不適 (ii) +2=0 つまり,r=-2のとき ①に代入すると これは②も満たす このとき, 与式は, a +1 = 0 または r+2=0 したがって, よって, (i), (ii) より, (1+i)x²+(3-i)x+2(1-3i)=0 (x+2){(1+i)x+(1-3i)}=0 x=-2, 1+2i ESA0 a=3, そのときの解 x = -2, 1+2i 100 + 4-2a+2=0 より,ca=3 <複素数の相等> A,Bが実数のとき バ A+ Bi=0 ⇔ A=0, B=0 実部と虚部に分ける. r²+ar+2, r²-r-2a は実数 a b が実数のとき, a+bi=0 ⇔a=0,b=0 a との連立方程式 r2 を消去して次数を下げ 実際に解くと, [~_=1±√7i それぞれの場合について、 もとに戻って調べる. r=-2 つまり 左辺は x+2を因数にもつ. 2 (1+i)x+(1-3i)=0 (1+i)x=-1+3i |-1+3i=1+2i x=- LI

未解決 回答数: 1
数学 高校生

数学について質問です。 例題66の(2)で自分の記述とFGの解答をみると、自分の記述の方が簡単に書いてあるんですけど、このくらいでも減点されないのでしょうか? 回答よろしくお願いします。

Think 例題 66 文字係数の2次不等式 aを定数とするとき, 次の2次不等式を解け. (1) x²-(a+4)x+4a<0 解答 050 考え方 (1) 2次不等式を解くには, グラフとx軸の共有点が重要である. 2次関数のグラフ をかいたときのx軸との共有点のx座標の大小で場合分けをする。 第2章 ax2-3ax+2a=a(x-1)(x-2) となるので,a> 0, a<0で場合分けをする. (2) (1) x2-(α+4)x+4a<0より、 左辺を因数分解する. y=x2-(a+4)x+4a① フとx軸との共有点のx座標は, (i) a >4 のとき Focus ①のグラフは,右の図より 求める解は, 4<x<a a=4のとき ①のグラフは, 右の図より, 求める解はない (i) α <4 のとき (i)~(血)より, ①のグラフは, 右下の図より, 求める解は, a<x<4 a>4 のとき,4<x<a α=4 のとき, 解はない (2) ax²-3ax+2a>0 (a=0) a < 4 のとき, a <x<4 (x-a)(x-4)<0 とすると,①のグラ x=a, 4 3 2次方程式と2次不等式 139 ①の解は, x<1,2<x α<0 のときa=d7 ②のグラフは上に凸より, 1<x<2 4 ②のグラフは下に凸より, (i) a=4 = x (2) ax²-3ax+2a>0 ONS a(x2-3x+2)>0 より, a(x-1)(x-2)>0① a a4x y=ax²-3ax+2α ・・・・・・ ② とすると、②のグラフ とx軸との共有点のx座標は, x=1,2 (i)a>0 のとき付き xC 350 (ii) V₁=Y 1 ①の解は, (i),(ii)より, a>0 のとき、x<1,2<x a<0のとき、1<x<2 BOX 文字係数の2次不等式は場合分けに注意 ·····ose x **** 共有点のx座標の大 小で場合分けする. (i) αが4より大きい (右側) (ii) a と 4が等しい () αが4より小さい (左側) 左辺を因数分解する. Wars SOVICKE 2次不等式という条 件からa=0 となる ORVOSI Scēcosxs ので、とくに示され ていなくても注意す る。 αの符号によって, 上に凸か下に凸かが 変わるので注意する. ①

解決済み 回答数: 1